Review 2 for Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks, webwork.
- Exam covers:
- Linear equations (2.1).
- Separable equations (2.2).
- Homogeneous equations (2.2).
- Modeling (2.3).
- Non-linear equations (2.4).
- Bernoulli equation (2.4).
- Exact equations (2.6).
- Exact equations with integrating factors (2.6).

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} . \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}=-\frac{1}{x} .
$$

Review 2 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0 .
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \Rightarrow \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x}
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\left.\begin{array}{l}
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}, \\
\tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y},
\end{array}\right\}
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: The equation is exact. We need to find the potential function ψ.

$$
\partial_{y} \psi=N, \quad \partial_{x} \psi=M
$$

From the first equation we get:

$$
\partial_{y} \psi=x^{2} e^{y}+\frac{1}{y} \quad \Rightarrow \quad \psi=x^{2} e^{y}+\ln (y)+g(x)
$$

Introduce the expression for ψ in the equation $\partial_{x} \psi=M$, that is,

$$
2 x e^{y}+g^{\prime}(x)=\partial_{x} \psi=M=2 x e^{y}+\frac{1}{x} \quad \Rightarrow \quad g^{\prime}(x)=\frac{1}{x} .
$$

Review 2 Exam 1.

Example

Find every solution y of the equation

$$
\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0
$$

Solution: Recall: $g^{\prime}(x)=\frac{1}{x}$. Therefore $g(x)=\ln (x)$.
The potential function is $\psi=x^{2} e^{y}+\ln (y)+\ln (x)$.
The solution y satisfies $x^{2} e^{y(x)}+\ln (y(x))+\ln (x)=c$.
Verification: Compute the implicit derivative in the equation above, and you should get the original differential equation.

$$
2 x e^{y}+x^{2} e^{y} y^{\prime}+\frac{1}{y} y^{\prime}+\frac{1}{x}=0 .
$$

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: The equation is: Not linear.
It is a Bernoulli equation: $y^{\prime}-4 x y=4 x y^{n}$, with $n=1 / 2$.
It is separable: $\frac{y^{\prime}}{y+\sqrt{y}}=4 x$.
The equation is not homogeneous. It is not exact.
Although the equation is both separable and Bernoulli, it is not simple to integrate using the separable equation method. Indeed

$$
\int \frac{y^{\prime}}{y+\sqrt{y}} d t=\int 4 x d x+c \Rightarrow \int \frac{d y}{y+\sqrt{y}}=2 x^{2}+c
$$

The integral on the left-hand side requires an integration table.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: We find solutions using the Bernoulli method.

$$
y^{\prime}-4 x y=4 x y^{1 / 2} \quad \Rightarrow \quad \frac{y^{\prime}}{y^{1 / 2}}-4 x y^{1 / 2}=4 x
$$

Change the unknowns: $v=1 / y^{n-1}$, with $n=1 / 2$. That is,

$$
\begin{gathered}
v=\frac{1}{y^{-1 / 2}} \Rightarrow v=y^{1 / 2}, \quad \Rightarrow \quad v^{\prime}=\frac{1}{2} \frac{y^{\prime}}{y^{1 / 2}} \\
2 v^{\prime}-4 x v=4 x \quad \Rightarrow \quad v^{\prime}-2 x v=2 x .
\end{gathered}
$$

The coefficient function is $a(x)=-2 x$, so $A(x)=-x^{2}$, and the integrating factor is $\mu(x)=e^{-x^{2}}$.

Review 2 for Exam 1.

Example

Find every solution of the initial value problem

$$
y^{\prime}=4 x(y+\sqrt{y}), \quad y(0)=4
$$

Solution: Recall: $v^{\prime}-2 x v=2 x$ and $\mu(x)=e^{-x^{2}}$.

$$
\begin{aligned}
& e^{-x^{2}} v^{\prime}-2 x e^{-x^{2}} v=2 x e^{-x^{2}} \quad \Rightarrow \quad\left(e^{-x^{2}} v\right)^{\prime}=2 x e^{-x^{2}} \\
& e^{-x^{2}} v=\int 2 x e^{-x^{2}} d x+c \quad \Rightarrow \quad e^{-x^{2}} v=-e^{-x^{2}}+c
\end{aligned}
$$

We conclude that $v=c e^{x^{2}}-1$. The initial condition for y implies the initial condition for v, that is, $v(x)=\sqrt{y(x)}$ implies $v(0)=2$.

$$
2=v(0)=c-1 \Rightarrow c=3 \Rightarrow v(x)=3 e^{x^{2}}-1
$$

We finally find $y=v^{2}$, that is, $y(x)=\left(3 e^{x^{2}}-1\right)^{2}$.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y(1)=2
$$

Solution: We first need to find the solution y.
The equation is separable.

$$
\begin{gathered}
y y^{\prime}=-2 t \quad \Rightarrow \quad \int y y^{\prime} d t=\int-2 t d t+c \quad \Rightarrow \quad \frac{y^{2}}{2}=-t^{2}+c \\
\frac{4}{2}=\frac{y^{2}(1)}{2}=-1+c \Rightarrow c=3 \Rightarrow y(t)=\sqrt{2\left(3-t^{2}\right)} .
\end{gathered}
$$

The domain of the solution y is $D=(-\sqrt{3}, \sqrt{3})$.
The points $\pm \sqrt{3}$ do not belong to the domain of y, since y^{\prime} and the differential equation are not defined there.

Review 2 for Exam 1.

Example

Find the domain of the function y solution of the IVP

$$
y^{\prime}=-\frac{2 t}{y}, \quad y\left(t_{0}\right)=y_{0}
$$

Solution: The solution y is given as above, $\frac{y^{2}}{2}=-t^{2}+c$.
The initial condition implies
$\frac{y_{0}^{2}}{2}=\frac{y^{2}\left(t_{0}\right)}{2}=-t_{0}^{2}+c \Rightarrow c=\frac{y_{0}^{2}}{2}+t_{0}^{2} \Rightarrow \frac{y^{2}}{2}=-t^{2}+t_{0}^{2}+\frac{y_{0}^{2}}{2}$.
The solution to the IVP is $y(t)=\sqrt{2\left(t_{0}^{2}-t^{2}\right)+y_{0}^{2}}$.
The domain of the solution depends on the initial condition t_{0}, y_{0} :

$$
D=\left(-\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}},+\sqrt{t_{0}^{2}+\frac{y_{0}^{2}}{2}}\right) .
$$

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: The equation is not linear, not Bernoulli, not separable. It is homogeneous. (Multiply numerator and denominator on the right hand side by $(1 / x)$.)
Is it exact? $(3 x+4 y) y^{\prime}+(2 x+3 y)=0$ implies $\partial_{x} N=3=\partial_{y} M$.
So the equation is exact.
We choose here the exact equation method. (Finding the potential function is sometimes simpler that solving homogeneous Eqs.)
We need to find the potential function ψ :

$$
\begin{gathered}
\partial_{y} \psi=N \quad \Rightarrow \quad \psi=3 x y+2 y^{2}+g(x) \\
\partial_{x} \psi=M \quad \Rightarrow \quad 3 y+g^{\prime}(x)=2 x+3 y \quad \Rightarrow \quad g(x)=x^{2}
\end{gathered}
$$

We conclude: $\psi(x, y)=3 x y+2 y^{2}+x^{2}$, and $\psi(x, y(x))=c . \quad<$

Review 2 for Exam 1.

Example
Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: If we solve the problem using that the equation is homogeneous, it is more complicated than the previous calculation. We just start the calculation to see the difficulty:

$$
y^{\prime}=-\frac{(2 x+3 y)}{(3 x+4 y)} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=-\frac{2+3\left(\frac{y}{x}\right)}{3+4\left(\frac{y}{x}\right)}
$$

The change $v=y / x$ implies $y=x v$ and $y^{\prime}=v+x v^{\prime}$. Hence
$v+x v^{\prime}=\frac{2+3 v}{3+4 v} \Rightarrow x v^{\prime}=\frac{2+3 v}{3+4 v}-v=\frac{2+3 v-3 v+4 v^{2}}{3+4 v}$.
We conclude that v satisfies $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.

Review 2 for Exam 1.

Example

Find every solution y to the equation $y^{\prime}=-\frac{2 x+3 y}{3 x+4 y}$.
Solution: Recall: $\frac{3+4 v}{2-4 v^{2}} v^{\prime}=\frac{1}{x}$.
This equation is complicated to integrate.

$$
\int \frac{3 v^{\prime}}{2-4 v^{2}} d x+\int \frac{4 v v^{\prime}}{2-4 v^{2}} d x=\int \frac{1}{x} d x+c=\ln (x)+c
$$

The usual substitution $u=v(x)$ implies $d u=v^{\prime} d x$, so

$$
\int \frac{3 d u}{2-4 u^{2}}+\int \frac{4 u d u}{2-4 u^{2}}=\ln (x)+c
$$

The first integral on the left-hand side requires integration tables.
This is why the exact method is simpler to use in this case.

