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I Review of Green’s Theorem on a plane.
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I Area computed with a line integral.



Review: Green’s Theorem on a plane

Theorem
Given a field F = 〈Fx ,Fy 〉 and a loop C enclosing a region R ∈ R2

described by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1], with
unit tangent vector u and exterior normal vector n, then holds:

I The counterclockwise line integral

∮
C

F · u ds satisfies:∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

I The counterclockwise line integral

∮
C

F · n ds satisfies:∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .
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Circulation-tangential form:∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .
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Flux-normal form:∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

Theorem
The Green Theorem in tangential form is equivalent to the Green
Theorem in normal form.
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Sketch of the proof of Green’s Theorem

We want to prove that for every differentiable vector field
F = 〈Fx ,Fy 〉 the Green Theorem in tangential form holds,∫

C

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

We only consider a simple domain like the one in the pictures.
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Using the picture on the left we show that∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

and using the picture on the right we show that∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .
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Sketch of the proof of Green’s Theorem

C

y y = g  (x)
1

R

xx1x0

y = g  (x)
0

Show that for Fx(t) = Fx(x(t), y(t)) holds∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

The path C can be described by the curves r0 and r1 given by

r0(t) = 〈t, g0(t)〉, t ∈ [x0, x1]

r1(t) = 〈(x1 + x0 − t), g1(x1 + x0 − t)〉 t ∈ [x0, x1].

Therefore,

r′0(t) = 〈1, g ′0(t)〉, t ∈ [x0, x1]

r′1(t) = 〈−1,−g ′1(x1 + x0 − t)〉 t ∈ [x0, x1].

Recall: Fx(t) = Fx(t, g0(t)) on r0,
and Fx(t) = Fx((x1 + x0 − t), g1(x1 + x0 − t)) on r1.
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Sketch of the proof of Green’s Theorem∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

Fx(t, g0(t)) dt

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt

Substitution in the second term: τ = x1 + x0 − t, so dτ = −dt.

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt =

−
∫ x0

x1

Fx(τ, g1(τ)) (−dτ) = −
∫ x1

x0

Fx(τ, g1(τ)) dτ.

Therefore,

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

[
Fx(t, g0(t))− Fx(t, g1(t))

]
dt.

We obtain:

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

∫ g1(t)

g0(t)

[
−∂yFx(t, y)

]
dy dt.
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Recall:

∫
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∫ x1

x0

∫ g1(t)

g0(t)

[
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This result is precisely what we wanted to prove:∫
C

Fx(t)x
′(t) dt =

∫∫
R

(
−∂yFx

)
dy dx .

We just mention that the result∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .

is proven in a similar way using the
parametrization of the C given in the
picture.
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Divergence and curl of a function on a plane

Definition
The curl of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar(

curlF
)
z

= ∂xFy − ∂yFx .

The divergence of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar

divF = ∂xFx + ∂yFy .

Remark: Both forms of Green’s Theorem can be written as:∮
C

F · u ds =

∫∫
R

(
curlF

)
z
dx dy .

∮
C

F · n ds =

∫∫
R

divF dx dy .
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Divergence and curl of a function on a plane

Remark: What type of information about F is given in
(
curlF

)
z
?

Example: Suppose F is the velocity field of a viscous fluid and

F = 〈−y , x〉 ⇒
(
curlF

)
z

= ∂xFy − ∂yFx = 2.

x

y

If we place a small ball at (0, 0), the ball will
spin around the z-axis with speed proportional
to

(
curlF

)
z
.

x

y
If we place a small ball at everywhere in the
plane, the ball will spin around the z-axis with
speed proportional to

(
curlF

)
z
.

Remark: The curl of a field measures its rotation.
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Green’s Theorem on a plane. (Sect. 16.4)

I Review of Green’s Theorem on a plane.

I Sketch of the proof of Green’s Theorem.

I Divergence and curl of a function on a plane.

I Area computed with a line integral.



Area computed with a line integral
Remark: Any of the two versions of Green’s Theorem can be used
to compute areas using a line integral.

For example:∫∫
R

(
∂xFx + ∂yFy

)
dx dy =

∮
C

(
Fx dy − Fy dx)

If F is such that the left-hand side above has integrand 1, then
that integral is the area A(R) of the region R. Indeed:

F = 〈x , 0〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

x dy .

F = 〈0, y〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

−y dx .

F =
1

2
〈x , y〉 ⇒

∫∫
R

dx dy = A(R) =
1

2

∮
C

(
x dy − y dx

)
.
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Area computed with a line integral

Example

Use Green’s Theorem to find the area of the region enclosed by the
ellipse r(t) = 〈a cos(t), b sin(t)〉, with t ∈ [0, 2π] and a, b positive.

Solution: We use: A(R) =

∮
C

x dy .

We need to compute r′(t) = 〈−a sin(t), b cos(t)〉. Then,

A(R) =

∫ 2π

0
x(t) y ′(t) dt =

∫ 2π

0
a cos(t) b cos(t) dt.

A(R) = ab

∫ 2π

0
cos2(t) dt = ab

∫ 2π

0

1

2

[
1 + cos(2t)

]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we obtain A(R) =

ab

2
2π, that is,

A(R) = πab. C
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Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I Explicit, implicit, parametric equations of surfaces.
I The area of a surface in space.

I The surface is given in parametric form.
I The surface is given in explicit form.



Review: Arc length and line integrals

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.
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Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I Explicit, implicit, parametric equations of surfaces.
I The area of a surface in space.

I The surface is given in parametric form.
I The surface is given in explicit form.



Review: Double integral of a scalar function

I The double integral of a function f : R ⊂ R2 → R on a region
R ⊂ R2, which is the volume under the graph of f and above
the z = 0 plane, and is given by∫∫

R

f dA = lim
n→∞

n∑
i=0

n∑
j=0

f (x∗i , y∗j ) ∆x ∆y .

I The area of a flat surface R ⊂ R2 is the particular case f = 1,

that is, A(R) =

∫∫
R

dA.

We will show how to compute:

I The area of a non-flat surface in space. (Today.)

I The integral of a scalar function f on a surface is space.

I The flux of a vector-valued function F on a surface in space.
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Explicit, implicit, parametric equations of surfaces

Review: Curves on R2 can be defined in:

I Explicit form, y = f (x);

I Implicit form, F (x , y) = 0;

I Parametric form, r(t) = 〈x(t), y(t)〉.

The vector r′(t) = 〈x ′(t), y ′(t)〉 is tangent to the curve.

Review: Surfaces in R3 can be defined in:

I Explicit form, z = f (x , y);

I Implicit form, F (x , y , z) = 0;

I Parametric form, r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.
Two vectors tangent to the surface are

∂ur(u, v) = 〈∂ux(u, v), ∂uy(u, v), ∂uz(u, v)〉,

∂v r(u, v) = 〈∂vx(u, v), ∂vy(u, v), ∂vz(u, v)〉.
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Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone z =
√

x2 + y2, and two
tangent vectors.

Solution: Use cylindrical coordinates: x = r cos(θ), y = r sin(θ),
z = z . Parameters of the surface: u = r , v = θ. Then

x(r , θ) = r cos(θ), y(r , θ) = r sin(θ), z(r , θ) = r .

Using vector notation, a parametric equation of the cone is

r(r , θ) = 〈r cos(θ), r sin(θ), r〉.

Two tangent vectors to the cone are ∂r r and ∂θr,

∂r r = 〈cos(θ), sin(θ), 1〉, ∂θr = 〈−r sin(θ), r cos(θ), 0〉. C
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Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere x2 + y2 + z2 = R2,
and two tangent vectors.

Solution: Use spherical coordinates:
x = ρ cos(θ) sin(φ), y = ρ sin(θ) sin(φ), z = ρ cos(φ).
Parameters of the surface: u = θ, v = φ.

x = R cos(θ) sin(φ), y = R sin(θ) sin(φ), z = R cos(φ).

Using vector notation, a parametric equation of the cone is

r(θ, φ) = R 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉.

Two tangent vectors to the paraboloid are ∂θr and ∂φr,

∂θr = R 〈− sin(θ) sin(φ), cos(θ) sin(φ), 0〉,

∂φr = R 〈cos(θ) cos(φ), sin(θ) cos(φ), − sin(φ)〉. C
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Using vector notation, a parametric equation of the cone is

r(θ, φ) = R 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉.

Two tangent vectors to the paraboloid are ∂θr and ∂φr,

∂θr = R 〈− sin(θ) sin(φ), cos(θ) sin(φ), 0〉,

∂φr = R 〈cos(θ) cos(φ), sin(θ) cos(φ), − sin(φ)〉. C
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Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I Explicit, implicit, parametric equations of surfaces.
I The area of a surface in space.

I The surface is given in parametric form.
I The surface is given in explicit form.



The area of a surface in parametric form

Theorem
Given a smooth surface S with parametric equation
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 for u ∈ [u0, u1] and v ∈ [v0, v1]
is given by

A(S) =

∫ u1

u0

∫ v1

v0

|∂ur× ∂v r| dv du.

0

d r

d r

z S = {   ( u, v ) }r

y

x

u

v

u = 

v = 

0

Remark: The function

dσ = |∂ur× ∂v r| dv du.

represents the area of a small
region on the surface.

This is the generalization to
surfaces of the arc-length formula
for the length of a curve.
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The area of a surface in parametric form
Example

Find an expression for the area of the surface in space given by the
paraboloid z = x2 + y2 between the planes z = 0 and z = 4.

Solution: Use cylindrical coordinates. The surface in parametric
form is

r(r , θ) = 〈r cos(θ), r sin(θ), r2〉.

The tangent vectors to the surface ∂r r, ∂θr are

∂r r = 〈cos(θ), sin(θ), 2r〉, ∂θr = 〈−r sin(θ), r cos(θ), 0〉.

∂r r× ∂θr =

∣∣∣∣∣∣
i j k

cos(θ) sin(θ) 2r
−r sin(θ) r cos(θ) 0

∣∣∣∣∣∣
∂r r× ∂θr = 〈−2r2 cos(θ),−2r2 sin(θ), r〉.
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√

1 + 4r2.

A(S) =

∫ 2π

0

∫ 2

0
r
√

1 + 4r2 dr dθ.

This integral will be done later on by substitution. The result is:

A(S) =
π

6

[
(17)3/2 − 1

]
. C
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Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I Explicit, implicit, parametric equations of surfaces.
I The area of a surface in space.

I The surface is given in parametric form.
I The surface is given in explicit form.



The area of a surface in space in explicit form

Theorem
Given a smooth function f : R3 → R, the area of a level surface
S = {f (x , y , z) = 0}, over a closed, bounded region R in the plane
{z = 0}, is given by

A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.

z S = { f (x,y,z) = 0 }

k

f

R

y

x

Remark: Eq. (7), page 949, in
the textbook is more general
than the equation above, since
the region R can be located on
any plane, not only the plane
{z = 0} considered here.

The vector p in the textbook is
the vector normal to R. In our
case p = k.
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The area of a surface in space in explicit form

Recall: The area of a level surface S = {f (x , y , z) = 0} over a flat
region R in {z = 0}, is given by

A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.

Example

Find the area of S = {z − 1 = 0} over R in {z = 0}.

Solution: This is simple: f (x , y , z) = z − 1, so ∇f = k, hence

|∇f |
|∇f · k|

= 1 ⇒ A(S) =

∫∫
R

dx dy = A(R). C

Remark: The formula for A(S) is reasonable: Every flat horizontal
surface S over a flat horizontal region R satisfies A(S) = A(R).
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The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by
the cylinder with walls x = y2 and x = 2− y2.

Solution:

z

2

1

x

yx = y
2

x = 2 − y
2

x + 2y + 2z = 5

The surface is given by f = 0 with

f (x , y , z) = x + 2y + 2z − 5.

The region R is in the plane z = 0,

R =

{
(x , y , z) : z = 0, y ∈ [−1, 1]

x ∈ [y2, (2− y2)]

}
.

Recall: A(S) =

∫∫
R

|∇f |
|∇f · k|

dA. Here ∇f = 〈1, 2, 2〉.
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1 + 4 + 4 = 3, and |∇f · k| = 2.

And the region R = {(x , y) : y ∈ [−1, 1], x ∈ [y2, (2− y2)]}.

So we can write down the expression for A(S) as follows,

A(S) =
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R

3

2
dx dy =

3

2

∫ 1

−1

∫ 2−y2

y2

dx dy .
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The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid
z = x2 + y2 between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function
f (x , y , z) = x2 + y2− z . The region R is the disk z = x2 + y2 6 4.

A(S) =

∫∫
R

|∇f |
|∇f · k|

dx dy , ∇f = 〈2x , 2y ,−1〉, ∇f · k = −1,

A(S) =

∫∫
R

√
1 + 4x2 + 4y2 dx dy .

Since R is a disk radius 2, it is convenient to use polar coordinates
in R2. We obtain

A(S) =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ.
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The area of a surface in space in explicit form

Remark: The formula for the area of a surface in space can be
generalized as follows.

Theorem
The area of a surface S given by f (x , y , z) = 0 over a closed and
bounded plane region R in space is given by

A(S) =

∫∫
R

|∇f |
|∇f · p|

dA, p

x

z f

y

f (x,y,z) = 0

R

k

where p is a unit vector normal to the region R and ∇f · p 6= 0.
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The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in
explicit form:

S = {(x , y , z) : z = g(x , y)},

On the one hand, a simple parametric form is to use u = x , v = y
and z(u, v) = g(u, v). Hence

r(x , y) = 〈x , y , g(x , y)〉 ⇒

{
∂x r = 〈1, 0, ∂xg〉
∂y r = 〈0, 1, ∂yg〉,

∂x r× ∂y r = 〈−∂xg ,−∂yg , 1〉

On the other hand, an implicit form for the surface is

f (x , y , z) = g(x , y)− z

Therefore, ∂x f = ∂xg , ∂y f = ∂yg , ∂z f = −1.
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The area of a surface in space in explicit form

Proof: Introduce a partition in R ⊂ R2, and consider an arbitrary
rectangle ∆R in that partition.

We compute the area ∆P.
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It is simple to see that

∆P = |u× v|,

and

u = 〈∆x , 0, (zi − ẑi )〉,
v = 〈0,∆y , (zi − z i )〉.

Therefore,

u× v =
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i j k

∆x 0 (zi − ẑi )
0 ∆y (zi − z i )

∣∣∣∣∣∣ = 〈−∆y(zi − ẑi ),−∆x(zi − z i ),∆x∆y〉.
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The linearization of f (x , y , z) at (xi , yi , zi ) implies

f (x , y , z) ' f (xi , yi , zi ) + (∂x f )i∆x + (∂y f )i∆y + (∂z f )i (z − zi ).

Since f (xi , yi , zi ) = 0, f (xi + ∆x , yi , ẑi ) = 0, f (xi , yi + ∆y , z i ) = 0,
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