Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Review: Green's Theorem on a plane

Theorem
Given a field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ and a loop C enclosing a region $R \in \mathbb{R}^{2}$ described by the function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$, with unit tangent vector \mathbf{u} and exterior normal vector \mathbf{n}, then holds:

- The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{u} d s$ satisfies:

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

- The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$ satisfies:

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y
$$

Review: Green's Theorem on a plane

Circulation-tangential form:
$\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.

Flux-normal form:

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y .
$$

Theorem
The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Sketch of the proof of Green's Theorem

We want to prove that for every differentiable vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ the Green Theorem in tangential form holds,

$$
\int_{C}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

Sketch of the proof of Green's Theorem

We want to prove that for every differentiable vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ the Green Theorem in tangential form holds,

$$
\int_{C}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y .
$$

We only consider a simple domain like the one in the pictures.

Sketch of the proof of Green's Theorem

We want to prove that for every differentiable vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ the Green Theorem in tangential form holds,

$$
\int_{C}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

We only consider a simple domain like the one in the pictures.

Using the picture on the left we show that

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

Sketch of the proof of Green's Theorem

We want to prove that for every differentiable vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ the Green Theorem in tangential form holds,

$$
\int_{C}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

We only consider a simple domain like the one in the pictures.

Using the picture on the left we show that

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

and using the picture on the right we show that

$$
\int_{C} F_{y}(t) y^{\prime}(t) d t=\iint_{R}\left(\partial_{x} F_{y}\right) d x d y
$$

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y ;
$$

The path C can be described by the curves \mathbf{r}_{0} and \mathbf{r}_{1} given by

$$
\begin{array}{ll}
\mathbf{r}_{0}(t)=\left\langle t, g_{0}(t)\right\rangle, & \\
\mathbf{r}_{1}(t)=\left\langle\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{1}\right]\right. \\
\left.\left.x_{0}-t\right)\right\rangle & \\
t \in\left[x_{0}, x_{1}\right] .
\end{array}
$$

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

The path C can be described by the curves \mathbf{r}_{0} and \mathbf{r}_{1} given by

$$
\begin{aligned}
\mathbf{r}_{0}(t) & =\left\langle t, g_{0}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}(t) & =\left\langle\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{r}_{0}^{\prime}(t) & =\left\langle 1, g_{0}^{\prime}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}^{\prime}(t) & =\left\langle-1,-g_{1}^{\prime}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

The path C can be described by the curves \mathbf{r}_{0} and \mathbf{r}_{1} given by

$$
\begin{aligned}
\mathbf{r}_{0}(t) & =\left\langle t, g_{0}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}(t) & =\left\langle\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{r}_{0}^{\prime}(t) & =\left\langle 1, g_{0}^{\prime}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}^{\prime}(t) & =\left\langle-1,-g_{1}^{\prime}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Recall: $F_{x}(t)=F_{x}\left(t, g_{0}(t)\right)$ on \mathbf{r}_{0},

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

The path C can be described by the curves \mathbf{r}_{0} and \mathbf{r}_{1} given by

$$
\begin{array}{ll}
\mathbf{r}_{0}(t)=\left\langle t, g_{0}(t)\right\rangle, & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}(t)=\left\langle\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right\rangle & \\
t \in\left[x_{0}, x_{1}\right] .
\end{array}
$$

Therefore,

$$
\begin{aligned}
\mathbf{r}_{0}^{\prime}(t) & =\left\langle 1, g_{0}^{\prime}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}^{\prime}(t) & =\left\langle-1,-g_{1}^{\prime}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Recall: $F_{x}(t)=F_{x}\left(t, g_{0}(t)\right)$ on \mathbf{r}_{0}, and $F_{x}(t)=F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right)$ on \mathbf{r}_{1}.

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Substitution in the second term: $\tau=x_{1}+x_{0}-t$, so $d \tau=-d t$.

$$
\begin{aligned}
& -\int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t= \\
- & \int_{x_{1}}^{x_{0}} F_{x}\left(\tau, g_{1}(\tau)\right)(-d \tau)
\end{aligned}
$$

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Substitution in the second term: $\tau=x_{1}+x_{0}-t$, so $d \tau=-d t$.

$$
\begin{gathered}
-\int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t= \\
-\int_{x_{1}}^{x_{0}} F_{x}\left(\tau, g_{1}(\tau)\right)(-d \tau)=-\int_{x_{0}}^{x_{1}} F_{x}\left(\tau, g_{1}(\tau)\right) d \tau .
\end{gathered}
$$

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{c} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Substitution in the second term: $\tau=x_{1}+x_{0}-t$, so $d \tau=-d t$.

$$
\begin{gathered}
-\int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t= \\
-\int_{x_{1}}^{x_{0}} F_{x}\left(\tau, g_{1}(\tau)\right)(-d \tau)=-\int_{x_{0}}^{x_{1}} F_{x}\left(\tau, g_{1}(\tau)\right) d \tau .
\end{gathered}
$$

Therefore, $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}}\left[F_{x}\left(t, g_{0}(t)\right)-F_{x}\left(t, g_{1}(t)\right)\right] d t$.

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{c} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Substitution in the second term: $\tau=x_{1}+x_{0}-t$, so $d \tau=-d t$.

$$
\begin{gathered}
-\int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t= \\
-\int_{x_{1}}^{x_{0}} F_{x}\left(\tau, g_{1}(\tau)\right)(-d \tau)=-\int_{x_{0}}^{x_{1}} F_{x}\left(\tau, g_{1}(\tau)\right) d \tau .
\end{gathered}
$$

Therefore, $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}}\left[F_{x}\left(t, g_{0}(t)\right)-F_{x}\left(t, g_{1}(t)\right)\right] d t$.
We obtain: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.

Sketch of the proof of Green's Theorem
Recall: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.

Sketch of the proof of Green's Theorem

Recall: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.
This result is precisely what we wanted to prove:

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d y d x .
$$

Sketch of the proof of Green's Theorem

Recall: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.
This result is precisely what we wanted to prove:

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d y d x
$$

We just mention that the result

$$
\int_{C} F_{y}(t) y^{\prime}(t) d t=\iint_{R}\left(\partial_{x} F_{y}\right) d x d y .
$$

is proven in a similar way using the parametrization of the C given in the
 picture.

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Divergence and curl of a function on a plane

Definition
The curl of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x} .
$$

The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}
$$

Divergence and curl of a function on a plane

Definition
The curl of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x} .
$$

The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}
$$

Remark: Both forms of Green's Theorem can be written as:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s & =\iint_{R}(\operatorname{curl} \mathbf{F})_{z} d x d y \\
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\iint_{R} \operatorname{div} \mathbf{F} d x d y
\end{aligned}
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

If we place a small ball at $(0,0)$, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

If we place a small ball at $(0,0)$, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

If we place a small ball at $(0,0)$, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

If we place a small ball at everywhere in the plane, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

If we place a small ball at $(0,0)$, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

If we place a small ball at everywhere in the plane, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

Remark: The curl of a field measures its rotation.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

The field \mathbf{F} represents the gas as is heated with a heat source at $(0,0)$. The heated gas expands in all directions, radially out form $(0,0)$. The $\operatorname{div} \mathbf{F}$ measures that expansion.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

The field \mathbf{F} represents the gas as is heated with a heat source at $(0,0)$. The heated gas expands in all directions, radially out form $(0,0)$. The $\operatorname{div} \mathbf{F}$ measures that expansion.

Remark: The divergence of a field measures its expansion.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

The field \mathbf{F} represents the gas as is heated with a heat source at $(0,0)$. The heated gas expands in all directions, radially out form $(0,0)$. The $\operatorname{div} \mathbf{F}$ measures that expansion.

Remark: The divergence of a field measures its expansion.
Remarks:

- Notice that for $\mathbf{F}=\langle x, y\rangle$ we have $(\operatorname{curl} \mathbf{F})_{z}=0$.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

The field \mathbf{F} represents the gas as is heated with a heat source at $(0,0)$. The heated gas expands in all directions, radially out form $(0,0)$. The $\operatorname{div} F$ measures that expansion.

Remark: The divergence of a field measures its expansion.
Remarks:

- Notice that for $\mathbf{F}=\langle x, y\rangle$ we have $(\operatorname{curl} \mathbf{F})_{z}=0$.
- Notice that for $\mathbf{F}=\langle-y, x\rangle$ we have $\operatorname{div} \mathbf{F}=0$.

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral.

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R.

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\mathbf{F}=\langle x, 0\rangle
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\mathbf{F}=\langle x, 0\rangle \quad \Rightarrow \quad \iint_{R} d x d y=A(R)=\oint_{c} x d y
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\begin{aligned}
\mathbf{F} & =\langle x, 0\rangle \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C} x d y \\
\mathbf{F} & =\langle 0, y\rangle
\end{aligned}
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\begin{aligned}
\mathbf{F}=\langle x, 0\rangle & \Rightarrow \iint_{R} d x d y=A(R)=\oint_{c} x d y \\
\mathbf{F}=\langle 0, y\rangle \quad & \Rightarrow \iint_{R} d x d y=A(R)=\oint_{c}-y d x
\end{aligned}
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\begin{aligned}
& \quad \mathbf{F}=\langle x, 0\rangle \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C} x d y \\
& \mathbf{F}=\langle 0, y\rangle \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C}-y d x . \\
& \mathbf{F}=\frac{1}{2}\langle x, y\rangle
\end{aligned}
$$

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{c}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\begin{gathered}
\mathbf{F}=\langle x, 0\rangle \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C} x d y \\
\mathbf{F}=\langle 0, y\rangle \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C}-y d x \\
\mathbf{F}=\frac{1}{2}\langle x, y\rangle \Rightarrow \iint_{R} d x d y=A(R)=\frac{1}{2} \oint_{C}(x d y-y d x) .
\end{gathered}
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$.

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{aligned}
& A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
& A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t
\end{aligned}
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{gathered}
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t=a b \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 t)] d t
\end{gathered}
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{aligned}
& \qquad \qquad(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
& \qquad A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t=a b \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 t)] d t \\
& \text { Since } \int_{0}^{2 \pi} \cos (2 t) d t=0
\end{aligned}
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{gathered}
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t=a b \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 t)] d t
\end{gathered}
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we obtain $A(R)=\frac{a b}{2} 2 \pi$,

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{gathered}
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t=a b \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 t)] d t
\end{gathered}
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we obtain $A(R)=\frac{a b}{2} 2 \pi$, that is,

$$
A(R)=\pi a b
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The circulation of a function $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The circulation of a function $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ is $\int_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$.
- The flux of a function $\mathbf{F}:\{z=0\} \cap \mathbb{R}^{3} \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ along a loop $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ is $\mathbb{F}=\oint_{c} \mathbf{F} \cdot \mathbf{n} d s$.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

- The area of a flat surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y .
$$

- The area of a flat surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We will show how to compute:

- The area of a non-flat surface in space. (Today.)

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y .
$$

- The area of a flat surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We will show how to compute:

- The area of a non-flat surface in space. (Today.)
- The integral of a scalar function f on a surface is space.

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

- The area of a flat surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We will show how to compute:

- The area of a non-flat surface in space. (Today.)
- The integral of a scalar function f on a surface is space.
- The flux of a vector-valued function \mathbf{F} on a surface in space.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;
- Implicit form, $F(x, y, z)=0$;

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;
- Implicit form, $F(x, y, z)=0$;
- Parametric form, $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;
- Implicit form, $F(x, y, z)=0$;
- Parametric form, $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.

Two vectors tangent to the surface are

$$
\partial_{u} \mathbf{r}(u, v)=\left\langle\partial_{u} x(u, v), \partial_{u} y(u, v), \partial_{u} z(u, v)\right\rangle,
$$

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;
- Implicit form, $F(x, y, z)=0$;
- Parametric form, $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.

Two vectors tangent to the surface are

$$
\begin{aligned}
& \partial_{u} \mathbf{r}(u, v)=\left\langle\partial_{u} x(u, v), \partial_{u} y(u, v), \partial_{u} z(u, v)\right\rangle \\
& \partial_{v} \mathbf{r}(u, v)=\left\langle\partial_{v} x(u, v), \partial_{v} y(u, v), \partial_{v} z(u, v)\right\rangle
\end{aligned}
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates:

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$.

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), r\rangle
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), r\rangle
$$

Two tangent vectors to the cone are $\partial_{r} \mathbf{r}$ and $\partial_{\theta} \mathbf{r}$,

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), r\rangle .
$$

Two tangent vectors to the cone are $\partial_{r} \mathbf{r}$ and $\partial_{\theta} \mathbf{r}$,

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 1\rangle
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), r\rangle .
$$

Two tangent vectors to the cone are $\partial_{r} \mathbf{r}$ and $\partial_{\theta} \mathbf{r}$,

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 1\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle .
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi)
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.

Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi) .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(\theta, \phi)=R\langle\cos (\theta) \sin (\phi), \quad \sin (\theta) \sin (\phi), \quad \cos (\phi)\rangle .
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.

Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi) .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(\theta, \phi)=R\langle\cos (\theta) \sin (\phi), \quad \sin (\theta) \sin (\phi), \quad \cos (\phi)\rangle .
$$

Two tangent vectors to the paraboloid are $\partial_{\theta} \mathbf{r}$ and $\partial_{\phi} \mathbf{r}$,

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.

Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi) .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(\theta, \phi)=R\langle\cos (\theta) \sin (\phi), \quad \sin (\theta) \sin (\phi), \quad \cos (\phi)\rangle .
$$

Two tangent vectors to the paraboloid are $\partial_{\theta} \mathbf{r}$ and $\partial_{\phi} \mathbf{r}$,

$$
\partial_{\theta} \mathbf{r}=R\langle-\sin (\theta) \sin (\phi), \quad \cos (\theta) \sin (\phi), 0\rangle,
$$

Explicit, implicit, parametric equations of surfaces

Example
Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi) .
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(\theta, \phi)=R\langle\cos (\theta) \sin (\phi), \quad \sin (\theta) \sin (\phi), \quad \cos (\phi)\rangle .
$$

Two tangent vectors to the paraboloid are $\partial_{\theta} \mathbf{r}$ and $\partial_{\phi} \mathbf{r}$,

$$
\begin{gathered}
\partial_{\theta} \mathbf{r}=R\langle-\sin (\theta) \sin (\phi), \quad \cos (\theta) \sin (\phi), 0\rangle, \\
\partial_{\phi} \mathbf{r}=R\langle\cos (\theta) \cos (\phi), \sin (\theta) \cos (\phi),-\sin (\phi)\rangle .
\end{gathered}
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

The area of a surface in parametric form

Theorem
Given a smooth surface S with parametric equation $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for $u \in\left[u_{0}, u_{1}\right]$ and $v \in\left[v_{0}, v_{1}\right]$ is given by

$$
A(S)=\int_{u_{0}}^{u_{1}} \int_{v_{0}}^{v_{1}}\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u .
$$

The area of a surface in parametric form

Theorem

Given a smooth surface S with parametric equation $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for $u \in\left[u_{0}, u_{1}\right]$ and $v \in\left[v_{0}, v_{1}\right]$ is given by

$$
A(S)=\int_{u_{0}}^{u_{1}} \int_{v_{0}}^{v_{1}}\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u
$$

The area of a surface in parametric form

Theorem

Given a smooth surface S with parametric equation $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for $u \in\left[u_{0}, u_{1}\right]$ and $v \in\left[v_{0}, v_{1}\right]$ is given by

$$
A(S)=\int_{u_{0}}^{u_{1}} \int_{v_{0}}^{v_{1}}\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u .
$$

Remark: The function

$$
d \sigma=\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u
$$

represents the area of a small region on the surface.

The area of a surface in parametric form

Theorem

Given a smooth surface S with parametric equation $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for $u \in\left[u_{0}, u_{1}\right]$ and $v \in\left[v_{0}, v_{1}\right]$ is given by

$$
A(S)=\int_{u_{0}}^{u_{1}} \int_{v_{0}}^{v_{1}}\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u .
$$

Remark: The function

$$
d \sigma=\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u
$$

represents the area of a small region on the surface.

This is the generalization to surfaces of the arc-length formula for the length of a curve.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle,
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle .
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle .
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle .
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle .
$$

$$
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\begin{gathered}
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle . \\
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos (\theta) & \sin (\theta) & 2 r \\
-r \sin (\theta) & r \cos (\theta) & 0
\end{array}\right|
\end{gathered}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\begin{gathered}
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle . \\
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos (\theta) & \sin (\theta) & 2 r \\
-r \sin (\theta) & r \cos (\theta) & 0
\end{array}\right| \\
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle .
\end{gathered}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}=r \sqrt{1+4 r^{2}} .
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\begin{gathered}
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}=r \sqrt{1+4 r^{2}} . \\
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{1+4 r^{2}} d r d \theta .
\end{gathered}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\begin{gathered}
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}=r \sqrt{1+4 r^{2}} . \\
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{1+4 r^{2}} d r d \theta
\end{gathered}
$$

This integral will be done later on by substitution.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\begin{gathered}
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}=r \sqrt{1+4 r^{2}} . \\
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{1+4 r^{2}} d r d \theta
\end{gathered}
$$

This integral will be done later on by substitution. The result is:

$$
A(S)=\frac{\pi}{6}\left[(17)^{3 / 2}-1\right]
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

The area of a surface in space in explicit form

Theorem
Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (7), page 949, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The area of a surface in space in explicit form

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (7), page 949, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p}=\mathbf{k}$.

The area of a surface in space in explicit form
Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

The area of a surface in space in explicit form
Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.

The area of a surface in space in explicit form
Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple:

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$,

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$,

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1 \quad \Rightarrow \quad A(S)=\iint_{R} d x d y
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1 \quad \Rightarrow \quad A(S)=\iint_{R} d x d y=A(R)
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1 \quad \Rightarrow \quad A(S)=\iint_{R} d x d y=A(R) .
$$

Remark: The formula for $A(S)$ is reasonable:

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1 \quad \Rightarrow \quad A(S)=\iint_{R} d x d y=A(R)
$$

Remark: The formula for $A(S)$ is reasonable: Every flat horizontal surface S over a flat horizontal region R satisfies $A(S)=A(R)$.

The area of a surface in space in explicit form
Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle.

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$,

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$,

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2} \Rightarrow A(S)=\iint_{R} \sqrt{2} d x d y
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2} \Rightarrow A(S)=\iint_{R} \sqrt{2} d x d y \Rightarrow A(S)=\sqrt{2} A(R)
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2} \Rightarrow A(S)=\iint_{R} \sqrt{2} d x d y \Rightarrow A(S)=\sqrt{2} A(R)
$$

Remark: The formula for $A(S)$ is still reasonable:

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Example
Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2} \Rightarrow A(S)=\iint_{R} \sqrt{2} d x d y \Rightarrow A(S)=\sqrt{2} A(R)
$$

Remark: The formula for $A(S)$ is still reasonable: Every flat surface S having an angle $\pi / 4$ over a flat horizontal region R satisfies $A(S)=\sqrt{2} A(R)$.

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: The formula for $A(S)$
can be interpreted as follows:

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: The formula for $A(S)$
can be interpreted as follows:
The factor $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}$ is the angle
correction function

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: The formula for $A(S)$
can be interpreted as follows:
The factor $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}$ is the angle
correction function needed to obtain the $A(S)$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: The formula for $A(S)$
can be interpreted as follows:
The factor $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}$ is the angle
correction function needed to obtain the $A(S)$ by correcting the $A(R)$

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: The formula for $A(S)$ can be interpreted as follows:
The factor $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}$ is the angle correction function needed to obtain the $A(S)$ by correcting the $A(R)$ by the relative inclination
 of S with respect to R.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5 .
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5 .
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

Recall: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5 .
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

Recall: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.
So we can write down the expression for $A(S)$ as follows,

$$
A(S)=\iint_{R} \frac{3}{2} d x d y
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.
So we can write down the expression for $A(S)$ as follows,

$$
A(S)=\iint_{R} \frac{3}{2} d x d y=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y .
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{aligned}
& \quad A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
& A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y
\end{aligned}
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{aligned}
& A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
& A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}
\end{aligned}
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right)
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)=3 \frac{4}{3}
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gather*}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)=3 \frac{4}{3} \Rightarrow A(S)=4 .
\end{gather*}
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$.

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1,
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1, \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y .
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1 \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y .
\end{gathered}
$$

Since R is a disk radius 2 , it is convenient to use polar coordinates in \mathbb{R}^{2}.

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1 \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y
\end{gathered}
$$

Since R is a disk radius 2 , it is convenient to use polar coordinates in \mathbb{R}^{2}. We obtain

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{aligned}
A(S)= & 2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
& A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u
\end{aligned}
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{gathered}
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u=\frac{2 \pi}{8} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{17}\right) .
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{gathered}
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u=\frac{2 \pi}{8} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{17}\right) .
\end{gathered}
$$

We conclude: $A(S)=\frac{\pi}{6}\left[(17)^{3 / 2}-1\right]$.

The area of a surface in space in explicit form

Remark: The formula for the area of a surface in space can be generalized as follows.

The area of a surface in space in explicit form

Remark: The formula for the area of a surface in space can be generalized as follows.

Theorem
The area of a surface S given by $f(x, y, z)=0$ over a closed and bounded plane region R in space is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to the region R and $\nabla f \cdot \mathbf{p} \neq 0$.

The area of a surface in space in explicit form
Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$.

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle
$$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle \quad \Rightarrow \quad\left\{\begin{array}{l}
\partial_{x} \mathbf{r}=\left\langle 1,0, \partial_{x} g\right\rangle \\
\partial_{y} \mathbf{r}=\left\langle 0,1, \partial_{y} g\right\rangle
\end{array}\right.
$$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle \Rightarrow\left\{\begin{array}{l}
\partial_{x} \mathbf{r}=\left\langle 1,0, \partial_{x} g\right\rangle \\
\partial_{y} \mathbf{r}=\left\langle 0,1, \partial_{y} g\right\rangle
\end{array}\right.
$$

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle
$$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle \quad \Rightarrow \quad\left\{\begin{array}{l}
\partial_{x} \mathbf{r}=\left\langle 1,0, \partial_{x} g\right\rangle \\
\partial_{y} \mathbf{r}=\left\langle 0,1, \partial_{y} g\right\rangle
\end{array}\right.
$$

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle
$$

On the other hand, an implicit form for the surface is

$$
f(x, y, z)=g(x, y)-z
$$

The area of a surface in space in explicit form

Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle \quad \Rightarrow \quad\left\{\begin{array}{l}
\partial_{x} \mathbf{r}=\left\langle 1,0, \partial_{x} g\right\rangle \\
\partial_{y} \mathbf{r}=\left\langle 0,1, \partial_{y} g\right\rangle
\end{array}\right.
$$

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle
$$

On the other hand, an implicit form for the surface is

$$
f(x, y, z)=g(x, y)-z
$$

Therefore,

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule)

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle
$$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle \quad \Rightarrow \quad \partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{1}{\partial_{z} f}\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle .
$$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle \quad \Rightarrow \quad \partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{1}{\partial_{z} f}\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle .
$$

That is, $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{\nabla f}{\nabla f \cdot \mathbf{k}}$.

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle \quad \Rightarrow \quad \partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{1}{\partial_{z} f}\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle .
$$

That is, $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{\nabla f}{\nabla f \cdot \mathbf{k}}$. We then obtain

$$
A(S)=\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}}\left|\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}\right| d y d x
$$

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle \quad \Rightarrow \quad \partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{1}{\partial_{z} f}\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle .
$$

That is, $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{\nabla f}{\nabla f \cdot \mathbf{k}}$. We then obtain

$$
A(S)=\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}}\left|\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}\right| d y d x=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form
Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition.

The area of a surface in space in explicit form

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

The area of a surface in space in explicit form

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

It is simple to see that

$$
\Delta P=|\mathbf{u} \times \mathbf{v}|
$$

The area of a surface in space in explicit form

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

It is simple to see that

$$
\Delta P=|\mathbf{u} \times \mathbf{v}|
$$

and

$$
\begin{aligned}
& \mathbf{u}=\left\langle\Delta x, 0,\left(z_{i}-\hat{z}_{i}\right)\right\rangle, \\
& \mathbf{v}=\left\langle 0, \Delta y,\left(z_{i}-\bar{z}_{i}\right)\right\rangle .
\end{aligned}
$$

Therefore,

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\Delta x & 0 & \left(z_{i}-\hat{z}_{i}\right) \\
0 & \Delta y & \left(z_{i}-\bar{z}_{i}\right)
\end{array}\right|=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle .
$$

The area of a surface in space in explicit form
Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The area of a surface in space in explicit form
Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right)
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right)
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right)
\end{aligned}
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y .
\end{aligned}
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y .
\end{aligned}
$$

$$
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}}
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{gathered}
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y \\
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y .
\end{gathered}
$$

The area of a surface in space in explicit form

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y . \\
& \mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y . \\
& \Delta P=\frac{\left|(\nabla f)_{i}\right|}{\left|(\nabla f \cdot \mathbf{k})_{i}\right|} \Delta x \Delta y
\end{aligned}
$$

The area of a surface in space in explicit form

$$
\text { Proof: Recall: } \mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle .
$$

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right)
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{gathered}
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y \\
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y . \\
\Delta P=\frac{\left|(\nabla f)_{i}\right|}{\left|(\nabla f \cdot \mathbf{k})_{i}\right|} \Delta x \Delta y \quad \Rightarrow \quad A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
\end{gathered}
$$

