Double integrals on regions (Sect. 15.2)

- Review: Fubini’s Theorem on rectangular domains.
- Fubini’s Theorem on non-rectangular domains.
 - Type I: Domain functions $y(x)$.
 - Type II: Domain functions $x(y)$.
- Finding the limits of integration.
Review: Fubini’s Theorem on rectangular domains

Theorem

If \(f : R \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(R = [a, b] \times [c, d] \), then

\[
\int\int_R f(x, y) \, dx \, dy = \int_a^b \int_c^d f(x, y) \, dy \, dx,
\]

\[
= \int_c^d \int_a^b f(x, y) \, dx \, dy.
\]
Review: Fubini’s Theorem on rectangular domains

Theorem

If $f : R \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous in $R = [a, b] \times [c, d]$, then

$$\int \int_R f(x, y) \, dx \, dy = \int_a^b \int_c^d f(x, y) \, dy \, dx,$$

$$= \int_c^d \int_a^b f(x, y) \, dx \, dy.$$

Remark: Fubini result says that double integrals can be computed doing two one-variable integrals.
Review: Fubini’s Theorem on rectangular domains

Theorem
If \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(R = [a, b] \times [c, d] \), then

\[
\int \int_R f(x, y) \, dx \, dy = \int_a^b \int_c^d f(x, y) \, dy \, dx,
\]
\[
= \int_c^d \int_a^b f(x, y) \, dx \, dy.
\]

Remark: Fubini result says that double integrals can be computed doing two one-variable integrals.

Remark: On a rectangle is simple to switch the order of integration in double integrals of continuous functions.
Review: Fubini’s Theorem on rectangular domains

Theorem

If $f : R \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous in $R = [a, b] \times [c, d]$, then

$$\int\int_R f(x, y) \, dx \, dy = \int_a^b \int_c^d f(x, y) \, dy \, dx,$$

$$= \int_c^d \int_a^b f(x, y) \, dx \, dy.$$

Remark: Fubini result says that double integrals can be computed doing two one-variable integrals.

Remark: On a rectangle is simple to switch the order of integration in double integrals of continuous functions.
Double integrals on regions (Sect. 15.2)

- Review: Fubini’s Theorem on rectangular domains.
- **Fubini’s Theorem on non-rectangular domains.**
 - Type I: Domain functions $y(x)$.
 - Type II: Domain functions $x(y)$.
- Finding the limits of integration.
Fubini’s Theorem on Type I domains, $y(x)$

Theorem

*If $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is continuous in D, then hold (Type I):

If $D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ y \in [g_1(x), g_2(x)] \}$, with g_1, g_2 continuous functions on $[a, b]$, then

$$\int\int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.$$*
Fubini’s Theorem on Type I domains, \(y(x) \)

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(D \), then hold (Type I):

If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ y \in [g_1(x), g_2(x)]\} \), with \(g_1, g_2 \) continuous functions on \([a, b] \), then

\[
\int\int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.
\]
Fubini’s Theorem on Type I domains, $y(x)$

Theorem

If $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is continuous in D, then hold (Type I):

If $D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ y \in [g_1(x), g_2(x)]\}$, with g_1, g_2 continuous functions on $[a, b]$, then

$$
\int \int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.
$$
Double integrals on regions (Sect. 15.2)

- Review: Fubini’s Theorem on rectangular domains.
- **Fubini’s Theorem on non-rectangular domains.**
 - Type I: Domain functions $y(x)$.
 - **Type II: Domain functions $x(y)$**.
- Finding the limits of integration.
Fubini’s Theorem on Type II domains, $x(y)$

Theorem
If $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is continuous in D, then hold (Type II):
If $D = \{(x, y) \in \mathbb{R}^2 : x \in [h_1(y), h_2(y)], \ y \in [c, d]\}$, with h_1, h_2 continuous functions on $[c, d]$, then

$$\int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.$$
Fubini’s Theorem on Type II domains, $x(y)$

Theorem

If $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous in D, then hold (Type II):

If $D = \{(x, y) \in \mathbb{R}^2 : x \in [h_1(y), h_2(y)], \ y \in [c, d]\}$, with h_1, h_2 continuous functions on $[c, d]$, then

$$
\int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
$$

![Diagram of Type II domain with integration boundaries](image)
Fubini’s Theorem on Type II domains, $x(y)$

Theorem

If $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous in D, then hold (Type II):

If $D = \{(x, y) \in \mathbb{R}^2 : x \in [h_1(y), h_2(y)], \ y \in [c, d]\}$, with h_1, h_2 continuous functions on $[c, d]$, then

$$
\int\int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
$$
Summary: Fubini’s Theorem on non-rectangular domains

Theorem
If $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is continuous in D, then hold:

(a) (Type I) If $D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ y \in [g_1(x), g_2(x)]\}$, with g_1, g_2 continuous functions on $[a, b]$, then

$$\int\int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.$$

(b) (Type II) If $D = \{(x, y) \in \mathbb{R}^2 : x \in [h_1(y), h_2(y)], \ y \in [c, d]\}$, with h_1, h_2 continuous functions on $[c, d]$, then

$$\int\int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.$$
Example

Find the integral of $f(x, y) = x^2 + y^2$, on the domain $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\}$.
A double integral on a Type I domain

Example
Find the integral of $f(x, y) = x^2 + y^2$, on the domain
$D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\}$.

Solution:
This is a Type I domain,
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\} \).

Solution:
This is a Type I domain, with lower boundary

\[
y = g_1(x) = x^2,
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\} \).

Solution:
This is a Type I domain, with lower boundary
\[
y = g_1(x) = x^2,
\]
and upper boundary
\[
y = g_2(x) = x.
\]
A double integral on a Type I domain

Example
Find the integral of $f(x, y) = x^2 + y^2$, on the domain $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\}$.

Solution:
This is a Type I domain, with lower boundary
$$y = g_1(x) = x^2,$$
and upper boundary
$$y = g_2(x) = x.$$
A double integral on a Type I domain.

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\} \).

Solution:
\[
I = \iiint_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx
\]
A double integral on a Type I domain.

Example
Find the integral of $f(x, y) = x^2 + y^2$, on the domain $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\}$.

Solution: $I = \int \int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx$
with $g_1(x) = x^2$ and $g_2(x) = x$,
A double integral on a Type I domain.

Example

Find the integral of \(f(x, y) = x^2 + y^2\), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\}\).

Solution: \(I = \int \int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx\)

with \(g_1(x) = x^2\) and \(g_2(x) = x\), we obtain

\[
I = \int \int_D f(x, y) \, dx \, dy = \int_0^1 \int_{x^2}^x (x^2 + y^2) \, dy \, dx,
\]
A double integral on a Type I domain.

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\} \).

Solution: \(I = \int\int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx \) with \(g_1(x) = x^2 \) and \(g_2(x) = x \), we obtain

\[
I = \int\int_D f(x, y) \, dx \, dy = \int_0^1 \int_{x^2}^x (x^2 + y^2) \, dy \, dx,
\]

\[
I = \int_0^1 \left[x^2 \left(y \right|_{x^2}^x \right) + \left(\frac{y^3}{3} \right|_{x^2}^x \right] \, dx.
\]
A double integral on a Type I domain.

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\} \).

Solution: \(I = \int \int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx \) with \(g_1(x) = x^2 \) and \(g_2(x) = x \), we obtain

\[
I = \int_0^1 \int_{x^2}^x (x^2 + y^2) \, dy \, dx,
\]

\[
I = \int_0^1 \left[x^2 \left(y \bigg|_{x^2}^x \right) + \left(\frac{y^3}{3} \right) \bigg|_{x^2}^x \right] \, dx.
\]

\[
I = \int_0^1 \left[x^2 (x - x^2) + \frac{1}{3} (x^3 - x^6) \right] \, dx.
\]
A double integral on a Type I domain

Example

Find the integral of $f(x, y) = x^2 + y^2$, on the domain $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\}$.

Solution: Recall:

$$I = \int_0^1 \left[x^2 (x - x^2) + \frac{1}{3} (x^3 - x^6) \right] dx.$$
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\} \).

Solution: Recall: \(I = \int_0^1 \left[x^2(x - x^2) + \frac{1}{3}(x^3 - x^6) \right] dx \).

\[
I = \int_0^1 \left[x^3 - x^4 + \frac{1}{3}x^3 - \frac{1}{3}x^6 \right] dx
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\} \).

Solution: Recall: \(I = \int_0^1 \left[x^2(x - x^2) + \frac{1}{3}(x^3 - x^6) \right] dx \).

\[
I = \int_0^1 \left[x^3 - x^4 + \frac{1}{3}x^3 - \frac{1}{3}x^6 \right] dx = \left[\frac{x^4}{4} - \frac{x^5}{5} + \frac{x^4}{12} - \frac{x^7}{21} \right]_0^1
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\} \).

Solution: Recall: \(I = \int_0^1 \left[x^2(x - x^2) + \frac{1}{3}(x^3 - x^6) \right] \, dx \).

\[
I = \int_0^1 \left[x^3 - x^4 + \frac{1}{3}x^3 - \frac{1}{3}x^6 \right] \, dx = \left[\frac{x^4}{4} - \frac{x^5}{5} + \frac{x^4}{12} - \frac{x^7}{21} \right]_0^1
\]

\[
I = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}
\]
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x\} \).

Solution: Recall: \(I = \int_{0}^{1} \left[x^2(x - x^2) + \frac{1}{3}(x^3 - x^6) \right] \, dx \).

\[
I = \int_{0}^{1} \left[x^3 - x^4 + \frac{1}{3}x^3 - \frac{1}{3}x^6 \right] \, dx = \left[\frac{x^4}{4} - \frac{x^5}{5} + \frac{x^4}{12} - \frac{x^7}{21} \right]_{0}^{1} \\
I = \frac{1}{3} - \frac{1}{5} - \frac{1}{21} = \frac{9}{(3)(5)(7)}.
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \quad x^2 \leq y \leq x\} \).

Solution: Recall:
\[
I = \int_0^1 \left[x^2(x - x^2) + \frac{1}{3}(x^3 - x^6) \right] \, dx.
\]

\[
I = \int_0^1 \left[x^3 - x^4 + \frac{1}{3}x^3 - \frac{1}{3}x^6 \right] \, dx = \left[\frac{x^4}{4} - \frac{x^5}{5} + \frac{x^4}{12} - \frac{x^7}{21} \right]_0^1
\]

\[
I = \frac{1}{3} - \frac{1}{5} - \frac{1}{21} = \frac{9}{35} = \frac{9}{(3)(5)(7)}.
\]

We conclude:
\[
\iint_D f(x, y) \, dx \, dy = \frac{3}{35}.
\]
Summary: Fubini’s Theorem on non-rectangular domains

Theorem
If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(D \), then hold:

(a) **(Type I)** If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], y \in [g_1(x), g_2(x)]\} \), with \(g_1, g_2 \) continuous functions on \([a, b]\), then

\[
\int \int_D f(x, y) \, dx \, dy = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.
\]

(b) **(Type II)** If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [h_1(y), h_2(y)], y \in [c, d]\} \), with \(h_1, h_2 \) continuous functions on \([c, d]\), then

\[
\int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
\]
A double integral on a Type II domain

Example

Find the integral of $f(x, y) = x^2 + y^2$ on the domain $D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\}$.
A double integral on a Type II domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain
\[D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\}. \]

Solution:

This is a Type II domain,
A double integral on a Type II domain

Example
Find the integral of $f(x, y) = x^2 + y^2$ on the domain $D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\}$.

Solution:
This is a Type II domain, with left boundary

$$x = h_1(y) = y,$$
A double integral on a Type II domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\} \).

Solution:
This is a Type II domain, with left boundary

\[x = h_1(y) = y, \]

and right boundary

\[x = h_2(y) = \sqrt{y}. \]
A double integral on a Type II domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\} \).

Solution:
This is a Type II domain, with left boundary
\[x = h_1(y) = y, \]
and right boundary
\[x = h_2(y) = \sqrt{y}. \]
A double integral on a Type II domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain
\[D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1 \}. \]

Solution:
This is a Type II domain, with left boundary
\[x = h_1(y) = y, \]
and right boundary
\[x = h_2(y) = \sqrt{y}. \]

Remark:
This domain is both Type I and Type II:
A double integral on a Type II domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\} \).

Solution:

This is a Type II domain, with left boundary

\[x = h_1(y) = y, \]

and right boundary

\[x = h_2(y) = \sqrt{y}. \]

Remark:

This domain is both Type I and Type II: \(y = x^2 \iff x = \sqrt{y} \).
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\} \).

Solution: \(I = \iint_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy \)
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\} \).

Solution:
\[
I = \int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy
\]
with \(h_1(y) = y \) and \(h_2(y) = \sqrt{y} \),
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\} \).

Solution: \(I = \int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy \)
with \(h_1(y) = y \) and \(h_2(y) = \sqrt{y} \), we obtain

\[
I = \int_0^1 \int_y^{\sqrt{y}} (x^2 + y^2) \, dx \, dy,
\]
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1\} \).

Solution: \(I = \iint_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy \)

with \(h_1(y) = y \) and \(h_2(y) = \sqrt{y} \), we obtain

\[
I = \int_0^1 \int_0^{\sqrt{y}} (x^2 + y^2) \, dx \, dy,
\]

\[
I = \int_0^1 \left[\left(\frac{x^3}{3} \right)_0^{\sqrt{y}} \right] + y^2 \left(x \right)_0^{\sqrt{y}} \right] dy,
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\[D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\}. \]

Solution:
\[
I = \int \int_D f(x, y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy
\]
with \(h_1(y) = y \) and \(h_2(y) = \sqrt{y} \), we obtain

\[
I = \int_0^1 \int_y^{\sqrt{y}} (x^2 + y^2) \, dx \, dy,
\]

\[
I = \int_0^1 \left[\left(\frac{x^3}{3} \right)_{\sqrt{y}}^y + y^2 \left(x \right)_{\sqrt{y}}^y \right] \, dy,
\]

\[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y) \right] \, dy.
\]
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\[
D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\}.
\]

Solution: \[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y)\right] dy.
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\} \).

Solution: \[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y) \right] dy.
\]

\[
I = \int_0^1 \left[\frac{1}{3} y^{3/2} - \frac{1}{3} y^3 + y^{5/2} - y^3 \right] dy,
\]
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{ (x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1 \} \).

Solution: \[
I = \int_0^1 \left[\frac{1}{3} \left(y^{3/2} - y^3 \right) + y^2 \left(y^{1/2} - y \right) \right] dy.
\]
\[
I = \left. \int_0^1 \left[\frac{1}{3} y^{3/2} - \frac{1}{3} y^3 + y^{5/2} - y^3 \right] dy \right|_0^1,
\]
\[
I = \left[\frac{1}{3} \frac{2}{5} y^{5/2} - \frac{1}{3} \frac{4}{4} + \frac{2}{7} y^{7/2} - \frac{4}{4} \right]_0^1,
\]
\[
I = \frac{3}{35}.
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\} \).

Solution:
\[
I = \int_0^1 \left[\frac{1}{3} \left(y^{3/2} - y^3 \right) + y^2 \left(y^{1/2} - y \right) \right] dy.
\]
\[
I = \int_0^1 \left[\frac{1}{3} y^{3/2} - \frac{1}{3} y^3 + y^{5/2} - y^3 \right] dy,
\]
\[
I = \left[\frac{1}{3} \frac{2}{5} y^{5/2} - \frac{1}{3} \frac{y^4}{4} + \frac{2}{7} y^{7/2} - \frac{y^4}{4} \right]_0^1,
\]
\[
I = \frac{2}{15} - \frac{1}{12} + \frac{2}{7} - \frac{1}{4}
\]

We conclude
\[
\int\int_D f(x, y) \, dx \, dy = \frac{3}{35}.
\]
A double integral on a Type I domain

Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\(D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1\} \).

Solution:
\[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y) \right] dy.
\]
\[
I = \int_0^1 \left[\frac{1}{3} y^{3/2} - \frac{1}{3} y^3 + y^{5/2} - y^3 \right] dy,
\]
\[
I = \left[\frac{1}{3} \cdot \frac{2}{5} y^{5/2} - \frac{1}{3} \cdot \frac{4}{4} + 2 \cdot \frac{2}{7} y^{7/2} - \frac{4}{4} \right]_0^1,
\]
\[
I = \frac{2}{15} - \frac{1}{12} + \frac{2}{7} - \frac{1}{4} = \frac{9}{(3)(5)(7)}.
\]
A double integral on a Type I domain

Example

Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain
\[D = \{(x, y) \in \mathbb{R}^2 : y \leq x \leq \sqrt{y}, \quad 0 \leq y \leq 1 \}. \]

Solution:
\[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y) \right] dy.
\]
\[
I = \int_0^1 \left[\frac{1}{3} y^{3/2} - \frac{1}{3} y^3 + y^{5/2} - y^3 \right] dy,
\]
\[
I = \left[\frac{1}{3} \frac{2}{5} y^{5/2} - \frac{1}{3} \frac{4}{4} y^4 + \frac{2}{7} y^{7/2} - \frac{4}{4} y^4 \right]_0^1,
\]
\[
I = \frac{2}{15} - \frac{1}{12} + \frac{2}{7} - \frac{1}{4} = \frac{9}{(3)(5)(7)}.
\]

We conclude
\[
\iint_D f(x, y) \, dx \, dy = \frac{3}{35}.
\]
Domains Type I and Type II

Summary: We have shown that a double integral of a function f on the domain D given in the pictures below holds,

$$
\int \int_D f(x, y) \, dx \, dy = \int_0^1 \int_{x^2}^x f(x, y) \, dy \, dx = \int_0^1 \int_y \sqrt{y} f(x, y) \, dx \, dy.
$$
Double integrals on regions (Sect. 15.2)

- Review: Fubini’s Theorem on rectangular domains.
- Fubini’s Theorem on non-rectangular domains.
 - Type I: Domain functions $y(x)$.
 - Type II: Domain functions $x(y)$.
- Finding the limits of integration.
Domains Type I and Type II

Example

Find the limits of integration of $\int\int_{D} f(x, y) \, dx \, dy$ in the domain $D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\}$ when D is considered first as Type I and then as Type II.
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain \(D = \{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \} \) when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain

\[D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\} \]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).

So, the boundary as Type I is given by

\[y = -2 \sqrt{1 - \frac{x^2}{9}} \]
Domains Type I and Type II

Example
Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain

\[D = \{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \} \]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).
So, the boundary as Type I is given by

\[y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \]
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_{D} f(x, y) \, dx \, dy \) in the domain

\[D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \} \]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).
So, the boundary as Type I is given by

\[
y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}}
\]
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain

\[D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\} \]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).
So, the boundary as Type I is given by

\[
 y = -2 \sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2 \sqrt{1 - \frac{x^2}{9}} = g_2(x).
\]
Domains Type I and Type II

Example

Find the limits of integration of $\int\int_D f(x, y) \, dx\,dy$ in the domain

$D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\}$ when D is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

So, the boundary as Type I is given by

$$y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}} = g_2(x).$$

The boundary as Type II is given by

$$x = -3\sqrt{1 - \frac{y^2}{4}}.$$
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain

\[D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\} \]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).

So, the boundary as Type I is given by

\[
y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}} = g_2(x).
\]

The boundary as Type II is given by

\[
x = -3\sqrt{1 - \frac{y^2}{4}} = h_1(y),
\]
Domains Type I and Type II

Example

Find the limits of integration of $\int \int_D f(x, y) \, dx \, dy$ in the domain $D = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1\}$ when D is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
So, the boundary as Type I is given by

$$y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}} = g_2(x).$$

The boundary as Type II is given by

$$x = -3\sqrt{1 - \frac{y^2}{4}} = h_1(y), \quad x = 3\sqrt{1 - \frac{y^2}{4}}.$$
Domains Type I and Type II

Example

Find the limits of integration of \(\int \int_D f(x, y) \, dx \, dy \) in the domain

\[
D = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \right\}
\]

when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \).

So, the boundary as Type I is given by

\[
y = -2\sqrt{1 - \frac{x^2}{9}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}} = g_2(x).
\]

The boundary as Type II is given by

\[
x = -3\sqrt{1 - \frac{y^2}{4}} = h_1(y), \quad x = 3\sqrt{1 - \frac{y^2}{4}} = h_2(y).
\]
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

\[\int_0^1 \int_1^{e^x} dy \, dx = \int_1^{e^1} \int_{\ln(y)}^1 dx \, dy. \]
Domains Type I and Type II

Example

Reverse the order of integration in \[\int_0^1 \int_1^{e^x} dy \, dx. \]

Solution:
This integral is written as Type I,
Example
Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\),
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_{0}^{1} \int_{1}^{e^{x}} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^{x}]\), with boundaries \(y = e^{x} \),

\[\int_{0}^{1} \int_{1}^{e^{x}} dy \, dx \]
Example
Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x, y = 1\),
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:

This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x\), \(y = 1\), while \(x \in [0, 1]\).
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x, \ y = 1\), while \(x \in [0, 1]\).
Example
Reverse the order of integration in \(\int_{0}^{1} \int_{1}^{e^x} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x, y = 1\), while \(x \in [0, 1]\).

Invert the first equation
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:

This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x\), \(y = 1\), while \(x \in [0, 1]\).

Invert the first equation and from the figure we get the left and right boundaries:

\[x = \ln(y), \]
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:

This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x, y = 1\), while \(x \in [0, 1]\).

Invert the first equation and from the figure we get the left and right boundaries:

\[x = \ln(y), \quad x = 1, \]
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_0^1 \int_1^{e^x} dy \, dx \).

Solution:

This integral is written as Type I, since we first integrate on vertical intervals \([1, e^x]\), with boundaries \(y = e^x\), \(y = 1\), while \(x \in [0, 1]\).

Invert the first equation and from the figure we get the left and right boundaries:

\[
x = \ln(y), \quad x = 1, \quad \text{with} \quad y \in [1, e].
\]
Domains Type I and Type II

Example

Reverse the order of integration in \(\int_{0}^{1} \int_{1}^{e^{x}} dy \, dx \).

Solution:
This integral is written as Type I, since we first integrate on vertical intervals \([1, e^{x}]\), with boundaries \(y = e^{x}, \ y = 1\), while \(x \in [0, 1]\).

Invert the first equation and from the figure we get the left and right boundaries:
\[x = \ln(y), \quad x = 1, \quad \text{with} \quad y \in [1, e]. \]

Therefore, we conclude that
\[\int_{0}^{1} \int_{1}^{e^{x}} dy \, dx = \int_{1}^{e} \int_{\ln(y)}^{1} dx \, dy. \]
Areas and double integrals. (Sect. 15.3)

- Areas of a region on a plane.
- Average value of a function.
- More examples of double integrals.
Areas of a region on a plane

Definition

The *area* of a closed, bounded region R on a plane is given by

$$A = \iint_R \, dx \, dy.$$
Areas of a region on a plane

Definition
The area of a closed, bounded region R on a plane is given by

$$A = \iint_R dx \, dy.$$

Remark:
- To compute the area of a region R we integrate the function $f(x, y) = 1$ on that region R.

Areas of a region on a plane

Definition
The area of a closed, bounded region R on a plane is given by

\[A = \int\int_R dx \, dy. \]

Remark:
- To compute the area of a region R we integrate the function $f(x, y) = 1$ on that region R.
- The area of a region R is computed as the volume of a 3-dimensional region with base R and height equal to 1.
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\}\).
Areas of a region on a plane

Example
Find the area of $R = \{ (x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2] \}$.

Solution: We express the region R as an integral Type I, integrating first on vertical directions:
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\}\).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \, dx.
\]
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \, dx.
\]

\[
A = \int_{-1}^{2} (y \bigg|_{x^2}^{x+2}) \, dx
\]

\[
A = \int_{-1}^{2} (x + 2 - x^2) \, dx
\]

\[
A = \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}
\]

\[
A = \left(\frac{4}{2} + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right)
\]

\[
A = \frac{8}{2} - \frac{1}{2} + 4 - 2 - \frac{2}{3} + \frac{1}{3}
\]

\[
A = \frac{9}{2}
\]

\[\text{\(\blacksquare \)}\]
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \ dx.
\]

\[
A = \int_{-1}^{2} \left(y \right|_{x^2}^{x+2} \right) dx = \int_{-1}^{2} (x + 2 - x^2) \ dx
\]
Areas of a region on a plane

Example
Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$.

Solution: We express the region R as an integral Type I, integrating first on vertical directions:

$$A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \ dx.$$

$$A = \int_{-1}^{2} (y \bigg|_{x^2}^{x+2}) \ dx = \int_{-1}^{2} (x + 2 - x^2) \ dx = \left(\frac{x^2}{2} + 2x - \frac{x^3}{3}\right)\bigg|_{-1}^{2}.$$
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}\).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \ dx.
\]

\[
A = \int_{-1}^{2} \left(y \bigg|_{x^2}^{x+2} \right) \ dx = \int_{-1}^{2} \left(x + 2 - x^2 \right) \ dx = \left(\frac{x^2}{2} + 2x - \frac{x^3}{3} \right) \bigg|_{-1}^{2}.
\]

\[
A = 2 - \frac{1}{2} + 4 + 2 - \frac{8}{3} - \frac{1}{3}
\]

\[
A = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}.
\]
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \, dx.
\]

\[
A = \int_{-1}^{2} (y \bigg|_{x^2}^{x+2}) \, dx = \int_{-1}^{2} (x + 2 - x^2) \, dx = \left(\frac{x^2}{2} + 2x - \frac{x^3}{3} \right) \bigg|_{-1}^{2}.
\]

\[
A = 2 - \frac{1}{2} + 4 + 2 - \frac{8}{3} - \frac{1}{3} = 8 - \frac{1}{2} - 3
\]
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \; dx.
\]

\[
A = \int_{-1}^{2} \left(y \bigg|_{x^2}^{x+2} \right) \; dx = \int_{-1}^{2} (x + 2 - x^2) \; dx = \left(\frac{x^2}{2} + 2x - \frac{x^3}{3} \right) \bigg|_{-1}^{2}.
\]

\[
A = 2 - \frac{1}{2} + 4 + 2 - \frac{8}{3} - \frac{1}{3} = 8 - \frac{1}{2} - 3 \Rightarrow A = \frac{9}{2}.
\]
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}\)
integrating first along horizontal directions.

Solution:

We express the region \(R \) as an integral Type II, integrating first on horizontal directions:

\[
A = \int \int_{R_1} dx \ dy + \int \int_{R_2} dx \ dy.
\]

We must get the same result:

\[
A = \frac{9}{2}.
\]
Areas of a region on a plane

Example
Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: We express the region R as an integral Type II, integrating first on horizontal directions:
Areas of a region on a plane

Example

Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: We express the region R as an integral Type II, integrating first on horizontal directions:

$$A = \int_{R_1} \int dx \ dy + \int_{R_2} \int dx \ dy.$$
Areas of a region on a plane

Example

Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x+2]\}$ integrating first along horizontal directions.

Solution: We express the region R as an integral Type II, integrating first on horizontal directions:

$$A = \int \int_{R_1} dx \ dy + \int \int_{R_2} dx \ dy.$$

$$A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_{1}^{4} \int_{y-2}^{y} dx \ dy.$$
Areas of a region on a plane

Example

Find the area of \(R = \{ (x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2] \} \) integrating first along horizontal directions.

Solution: We express the region \(R \) as an integral Type II, integrating first on horizontal directions:

\[
A = \int \int_{R_1} dx \ dy + \int \int_{R_2} dx \ dy.
\]

\[
A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_{1}^{4} \int_{y-2}^{y} dx \ dy.
\]

We must get the same result: \(A = 9/2 \).
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \)
integrating first along horizontal directions.

Solution: Recall: \(A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_{1}^{4} \int_{y-2}^{y} dx \ dy. \)
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \[A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_{1}^{4} \int_{y-2}^{\sqrt{y}} dx \ dy. \]

\[A = \int_{0}^{1} 2\sqrt{y} \ dy + \]
Areas of a region on a plane

Example

Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: Recall: $A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy$.

$$A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 \left(\sqrt{y} - y + 2 \right) dy$$
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \)
integrating first along horizontal directions.

Solution: Recall:
\[
A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy.
\]

\[
A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 (\sqrt{y} - y + 2) \ dy
\]

\[
A = 2 \left(\frac{2}{3} y^{3/2} \right) \bigg|_0^1 +
\]
Areas of a region on a plane

Example
Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: Recall:

$$A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_{1}^{4} \int_{y-2}^{\sqrt{y}} dx \ dy$$

$$A = \int_{0}^{1} 2\sqrt{y} \ dy + \int_{1}^{4} (\sqrt{y} - y + 2) \ dy$$

$$A = 2 \left(\frac{2}{3} y^{3/2}\right) \bigg|_{0}^{1} + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right) \bigg|_{1}^{4}$$

We conclude that $A = \frac{9}{2}$.\[\square\]
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \(A = \int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_{1}^{4} \int_{y-2}^{\sqrt{y}} dx \, dy \).

\[
A = \int_{0}^{1} 2\sqrt{y} \, dy + \int_{1}^{4} (\sqrt{y} - y + 2) \, dy
\]

\[
A = 2\left(\frac{2}{3} y^{3/2}\right)\bigg|_{0}^{1} + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)\bigg|_{1}^{4}
\]

\[
A = \frac{4}{3} +
\]
Areas of a region on a plane

Example

Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: Recall: $A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy$.

\[
A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 (\sqrt{y} - y + 2) \ dy \\
A = 2 \left(\frac{2}{3} y^{3/2} \right) \bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y \right) \bigg|_1^4 \\
A = \frac{4}{3} + \frac{16}{3} -\]
Areas of a region on a plane

Example
Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: Recall: $A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy$.

\[
A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 (\sqrt{y} - y + 2) \ dy
\]

\[
A = 2\left(\frac{2}{3} y^{3/2}\right)\bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)\bigg|_1^4
\]

\[
A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - \frac{4}{3} = \frac{2}{3}.
\]
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \[A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} \ dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} \ dx \ dy. \]

\[
A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 (\sqrt{y} - y + 2) \ dy
\]

\[
A = 2\left(\frac{2}{3} y^{3/2}\right)\bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)\bigg|_1^4
\]

\[
A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 +
\]
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], \ y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \(A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy \).

\[
A = \int_0^1 2\sqrt{y} \ dy + \int_1^4 (\sqrt{y} - y + 2) \ dy
\]

\[
A = 2\left(\frac{2}{3} y^{3/2}\right)|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)|_1^4
\]

\[
A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 + \frac{1}{2} +\]
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \)
inintgrating first along horizontal directions.

Solution: Recall: \[
A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_1^4 \int_{y-2}^y dx \, dy.
\]

\[
A = \int_0^1 2\sqrt{y} \, dy + \int_1^4 (\sqrt{y} - y + 2) \, dy.
\]

\[
A = 2 \left(\frac{2}{3} y^{3/2} \right) \bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y \right) \bigg|_1^4
\]

\[
A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 + \frac{1}{2} + 8 - \quad
\]
Areas of a region on a plane

Example
Find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\}$ integrating first along horizontal directions.

Solution: Recall: $A = \int_0^4 \int_{\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_1^4 \int_{\sqrt{y}-2}^{\sqrt{y}} dx \, dy$.

$$A = \int_0^1 2\sqrt{y} \, dy + \int_1^4 (\sqrt{y} - y + 2) \, dy$$

$$A = 2\left(\frac{2}{3} y^{3/2}\right)|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)|_1^4$$

$$A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 + \frac{1}{2} + 8 - 2$$

We conclude that $A = \frac{9}{2}$. ◯
Areas of a region on a plane

Example

Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \(A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \, dy \).

\[A = \int_0^1 2\sqrt{y} \, dy + \int_1^4 (\sqrt{y} - y + 2) \, dy \]

\[A = 2 \left(\frac{2}{3} y^{3/2} \right) \bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y \right) \bigg|_1^4 \]

\[A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 + \frac{1}{2} + 8 - 2 = 6 - \frac{3}{2}. \]
Areas of a region on a plane

Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\} \) integrating first along horizontal directions.

Solution: Recall: \(A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \, dy \).

\[
A = \int_0^1 2\sqrt{y} \, dy + \int_1^4 (\sqrt{y} - y + 2) \, dy
\]

\[
A = 2\left(\frac{2}{3} y^{3/2}\right)\bigg|_0^1 + \left(\frac{2}{3} y^{3/2} - \frac{y^2}{2} + 2y\right)\bigg|_1^4
\]

\[
A = \frac{4}{3} + \frac{16}{3} - \frac{2}{3} - 8 + \frac{1}{2} + 8 - 2 = 6 - \frac{3}{2}.
\]

We conclude that \(A = \frac{9}{2} \). \(\triangle \)
Areas and double integrals. (Sect. 15.3)

- Areas of a region on a plane.
- **Average value of a function.**
- More examples of double integrals.
Average value of a function

Review: The average of a single variable function.

Definition
The *average* of a function \(f : [a, b] \rightarrow \mathbb{R} \) on the interval \([a, b]\), denoted by \(f \), is given by

\[
\bar{f} = \frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx.
\]
Average value of a function

Review: The average of a single variable function.

Definition

The *average* of a function $f : [a, b] \to \mathbb{R}$ on the interval $[a, b]$, denoted by \bar{f}, is given by

$$
\bar{f} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx.
$$
Average value of a function

Review: The average of a single variable function.

Definition
The *average* of a function \(f : [a, b] \to \mathbb{R} \) on the interval \([a, b]\), denoted by \(\bar{f} \), is given by

\[
\bar{f} = \frac{1}{(b - a)} \int_a^b f(x) \, dx.
\]

Definition
The *average* of a function \(f : R \subset \mathbb{R}^2 \to \mathbb{R} \) on the region \(R \) with area \(A(R) \), denoted by \(\bar{f} \), is given by

\[
\bar{f} = \frac{1}{A(R)} \iint_R f(x, y) \, dx \, dy.
\]
Average value of a function

Example

Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\} \).
Average value of a function

Example
Find the average of \(f(x, y) = xy \) on the region \(R = \{ (x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3] \} \).

Solution: The area of the rectangle \(R \) is
Average value of a function

Example
Find the average of \(f(x, y) = xy \) on the region
\[R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\}. \]

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).
Average value of a function

Example

Find the average of $f(x, y) = xy$ on the region $R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\}$.

Solution: The area of the rectangle R is $A(R) = 6$. We only need to compute $I = \iint_R f(x, y) \, dx \, dy$.

Average value of a function

Example
Find the average of $f(x, y) = xy$ on the region $R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\}$.

Solution: The area of the rectangle R is $A(R) = 6$. We only need to compute $I = \iint_R f(x, y) \, dx \, dy$.

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx
\]
Average value of a function

Example
Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).
We only need to compute \(I = \iint_R f(x, y) \, dx \, dy \).

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \right)_0^3 \, dx
\]
Average value of a function

Example
Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).
We only need to compute \(I = \iint_R f(x, y) \, dx \, dy \).

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \bigg|_0^3 \right) \, dx = \int_0^2 \frac{9}{2} x \, dx.
\]
Average value of a function

Example

Find the average of \(f(x, y) = xy \) on the region
\(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).
We only need to compute
\[
I = \int \int_R f(x, y) \, dx \, dy.
\]

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \bigg|_0^3 \right) \, dx = \int_0^2 \frac{9}{2} x \, dx.
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \bigg|_0^2 \right)
\]
Example
Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \). We only need to compute \(I = \iint_R f(x, y) \, dx \, dy \).

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \bigg|_0^3 \right) \, dx = \int_0^2 \frac{9}{2} x \, dx.
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \bigg|_0^2 \right) \Rightarrow I = 9.
\]
Average value of a function

Example
Find the average of $f(x, y) = xy$ on the region $R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\}$.

Solution: The area of the rectangle R is $A(R) = 6$. We only need to compute $I = \int \int_R f(x, y) \, dx \, dy$.

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \right)_0^3 \, dx = \int_0^2 \frac{9}{2} x \, dx.
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \right)_0^2 \Rightarrow I = 9.
\]

Since $\bar{f} = I / A(R)$
Average value of a function

Example

Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).

We only need to compute \(I = \int \int_R f(x, y) \, dx \, dy \).

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \bigg|_0^3 \right) \, dx = \int_0^2 \frac{9}{2}x \, dx.
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \bigg|_0^2 \right) \Rightarrow I = 9.
\]

Since \(\bar{f} = I / A(R) = 9 / 6 \),
Average value of a function

Example

Find the average of \(f(x, y) = xy \) on the region \(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], \ y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).

We only need to compute \(I = \int \int_R f(x, y) \, dx \, dy \).

\[
I = \int_0^2 \int_0^3 xy \, dy \, dx = \int_0^2 x \left(\frac{y^2}{2} \bigg|_0^3 \right) \, dx = \int_0^2 \frac{9}{2} x \, dx.
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \bigg|_0^2 \right) \quad \Rightarrow \quad I = 9.
\]

Since \(\bar{f} = I / A(R) = 9/6 \), we get \(\bar{f} = 3/2 \).\(\triangle \)
Areas and double integrals. (Sect. 15.3)

- Areas of a region on a plane.
- Average value of a function.
- More examples of double integrals.
More examples of double integrals

Example

Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution:

We need to compute $M = \int\int_R \rho(x, y) \, dx \, dy$.

Remark: If ρ is the mass density, then M is the total mass.

$$M = \int_0^1 \int_0^{2x} (x + y) \, dy \, dx = \int_0^1 \left[xy + \frac{y^2}{2} \right]_0^{2x} \, dx = \int_0^1 \left[2x^2 + \frac{4x^2}{2} \right] \, dx = 4 \int_0^1 x^3 \, dx = 4 \left[\frac{x^4}{4} \right]_0^1 = 4.$$

\blacksquare
More examples of double integrals

Example
Find the integral of \(\rho(x, y) = x + y \) in the triangle with boundaries \(y = 0, x = 1 \) and \(y = 2x \).

Solution: We need to compute

\[
M = \int \int_{R} \rho(x, y) \, dx\,dy.
\]
More examples of double integrals

Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute

$$M = \int\int_{R} \rho(x, y) \, dx \, dy.$$

Remark: If ρ is the mass density, then M is the total mass.
More examples of double integrals

Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute

$$M = \int\int_R \rho(x, y) \, dx \, dy.$$

Remark: If ρ is the mass density, then M is the total mass.
More examples of double integrals

Example
Find the integral of \(\rho(x, y) = x + y \) in the triangle with boundaries \(y = 0, x = 1 \) and \(y = 2x \).

Solution: We need to compute

\[
M = \int_{R} \int \rho(x, y) \, dx \, dy.
\]

Remark: If \(\rho \) is the mass density, then \(M \) is the total mass.

\[
M = \int_{0}^{1} \int_{0}^{2x} (x + y) \, dy \, dx
\]

\[
= \int_{0}^{1} \left[xy + \frac{y^2}{2} \right]_{0}^{2x} \, dx
\]

\[
= \int_{0}^{1} \left(2x^2 + \frac{4x^2}{2} \right) \, dx
\]

\[
= \int_{0}^{1} 3x^2 \, dx
\]

\[
= \left[x^3 \right]_{0}^{1}
\]

\[
= 1
\]

\[
\Rightarrow \quad M = 4
\]
More examples of double integrals

Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute

$$M = \int\int_{R} \rho(x, y) \, dx \, dy.$$

Remark: If ρ is the mass density, then M is the total mass.

$$M = \int_{0}^{1} \int_{0}^{2x} (x + y) \, dy \, dx = \int_{0}^{1} \left[x \left(y \bigg|_{0}^{2x} \right) + \left(\frac{y^2}{2} \bigg|_{0}^{2x} \right) \right] \, dx.$$
More examples of double integrals

Example
Find the integral of \(\rho(x, y) = x + y \) in the triangle with boundaries \(y = 0, \ x = 1 \) and \(y = 2x \).

Solution: We need to compute

\[
M = \int \int_R \rho(x, y) \, dxdy.
\]

Remark: If \(\rho \) is the mass density, then \(M \) is the total mass.

\[
M = \int_0^1 \int_0^{2x} (x + y) \, dy \, dx = \int_0^1 \left[x \left(y \bigg|_0^{2x} \right) + \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx.
\]

\[
M = \int_0^1 [2x^2 + 2x^2] \, dx
\]
More examples of double integrals

Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute

$$M = \int\int_R \rho(x, y) \, dx \, dy.$$

Remark: If ρ is the mass density, then M is the total mass.

$$M = \int_0^1 \int_0^{2x} (x + y) \, dy \, dx = \int_0^1 \left[x \left(y \bigg|_0^{2x} \right) + \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx.$$

$$M = \int_0^1 \left[2x^2 + 2x^2 \right] \, dx = 4 \frac{x^3}{3} \bigg|_0^1 = \frac{4}{3}.$$
More examples of double integrals

Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute

$$M = \iint_R \rho(x, y) \, dx \, dy.$$

Remark: If ρ is the mass density, then M is the total mass.

$$M = \int_0^1 \int_0^{2x} (x + y) \, dy \, dx = \int_0^1 \left[x \left(y \bigg|_0^{2x} \right) + \frac{y^2}{2} \bigg|_0^{2x} \right] \, dx.$$

$$M = \int_0^1 \left[2x^2 + 2x^2 \right] \, dx = 4 \frac{x^3}{3} \bigg|_0^1 \Rightarrow M = \frac{4}{3}.$$

\triangleleft
More examples of double integrals

Example
Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_R x\rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \iint_R y\rho(x, y) \, dy \, dx.
$$
More examples of double integrals

Example
Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\overline{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \overline{r}_y = \frac{1}{M} \iint_R y \rho(x, y) \, dy \, dx.
$$

Remark: $\mathbf{r} = \langle \overline{r}_x, \overline{r}_y \rangle$ is the center of mass of the body.
More examples of double integrals

Example
Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int \int_R y \rho(x, y) \, dy \, dx.$$

Remark: $\mathbf{r} = \langle \bar{r}_x, \bar{r}_y \rangle$ is the center of mass of the body.

Solution: Recall: $M = \frac{4}{3}$.

More examples of double integrals

Example

Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_{R} x\rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int_{R} \int y\rho(x, y) \, dy \, dx.
$$

Remark: $\mathbf{r} = \langle \bar{r}_x, \bar{r}_y \rangle$ is the center of mass of the body.

Solution: Recall: $M = \frac{4}{3}$. We need to compute

$$
\bar{r}_x = \frac{1}{M} \int_{0}^{1} \int_{0}^{2x} (x + y)x \, dy \, dx
$$
More examples of double integrals

Example
Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \iint_R y \rho(x, y) \, dy \, dx.
$$

Remark: $\mathbf{r} = \langle \bar{r}_x, \bar{r}_y \rangle$ is the center of mass of the body.

Solution: Recall: $M = \frac{4}{3}$. We need to compute

$$
\bar{r}_x = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)x \, dy \, dx = \frac{3}{4} \int_0^1 \left[x^2 \left(y \bigg|_0^{2x} \right) + x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx
$$
More examples of double integrals

Example
Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_R x\rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int\int_R y\rho(x, y) \, dy \, dx.
\]

Remark: \(\mathbf{r} = \langle \bar{r}_x, \bar{r}_y \rangle \) is the center of mass of the body.

Solution: Recall: \(M = \frac{4}{3} \). We need to compute

\[
\bar{r}_x = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)x \, dy \, dx = \frac{3}{4} \int_0^1 \left[x^2 \left(y \bigg|_0^{2x} \right) + x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx
\]

\[
\bar{r}_x = \frac{3}{4} \int_0^1 \left[2x^3 + 2x^3 \right] \, dx
\]
More examples of double integrals

Example
Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int \int R y \rho(x, y) \, dy \, dx.
\]

Remark: \(\bar{r} = \langle \bar{r}_x, \bar{r}_y \rangle \) is the center of mass of the body.

Solution: Recall: \(M = \frac{4}{3} \). We need to compute

\[
\bar{r}_x = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)x \, dy \, dx = \frac{3}{4} \int_0^1 \left[x^2 \left(y \bigg|_0^{2x} \right) + x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx
\]

\[
\bar{r}_x = \frac{3}{4} \int_0^1 \left[2x^3 + 2x^3 \right] \, dx = \frac{3}{4} x^4 \bigg|_0^1
\]
More examples of double integrals

Example

Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int_R \int_R y \rho(x, y) \, dy \, dx.
\]

Remark: \(\mathbf{r} = \langle \bar{r}_x, \bar{r}_y \rangle \) is the center of mass of the body.

Solution: Recall: \(M = \frac{4}{3} \). We need to compute

\[
\bar{r}_x = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)x \, dy \, dx = \frac{3}{4} \int_0^1 \left[x^2 \left(y \bigg|_0^{2x} \right) + x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx
\]

\[
\bar{r}_x = \frac{3}{4} \int_0^1 \left[2x^3 + 2x^3 \right] \, dx = \frac{3}{4} x^4 \bigg|_0^1 \quad \Rightarrow \quad \bar{r}_x = \frac{3}{4}.
\]
More examples of double integrals

Example

Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int_R \int_R y \rho(x, y) \, dy \, dx.
\]

Solution: Recall: \(M = \frac{4}{3} \) and \(\bar{r}_x = \frac{3}{4} \).
More examples of double integrals

Example

Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int_R \int y \rho(x, y) \, dy \, dx.$$

Solution: Recall: $M = \frac{4}{3}$ and $\bar{r}_x = \frac{3}{4}$.

$$\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)y \, dy \, dx$$
More examples of double integrals

Example

Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int \int_R y \rho(x, y) \, dy \, dx.
$$

Solution: Recall: $M = \frac{4}{3}$ and $\bar{r}_x = \frac{3}{4}$.

$$
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y) y \, dy \, dx = \frac{3}{4} \int_0^1 \left[x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) + \left(\frac{y^3}{3} \bigg|_0^{2x} \right) \right] \, dx
$$
More examples of double integrals

Example

Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_0^1 \int_0^{2x} x\rho(x, y) \, dy \, dx,
\]

\[
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} y\rho(x, y) \, dy \, dx.
\]

Solution: Recall: \(M = \frac{4}{3} \) and \(\bar{r}_x = \frac{3}{4} \).

\[
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)y \, dy \, dx = \frac{3}{4} \int_0^1 \left[x \left(\frac{y^2}{2} \right)_0^{2x} \right] + \left(\frac{y^3}{3} \right)_0^{2x} \, dx
\]

\[
\bar{r}_y = \frac{3}{4} \int_0^1 \left[2x^3 + \frac{8}{3}x^3 \right] \, dx
\]
More examples of double integrals

Example

Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0 \), \(x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int\int_R y \rho(x, y) \, dy \, dx.
\]

Solution: Recall: \(M = \frac{4}{3} \) and \(\bar{r}_x = \frac{3}{4} \).

\[
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)y \, dy \, dx = \frac{3}{4} \int_0^1 \left[x \left(\frac{y^2}{2} \right|_0^{2x} \right) + \left(\frac{y^3}{3} \right|_0^{2x} \right] \, dx
\]

\[
\bar{r}_y = \frac{3}{4} \int_0^1 \left[2x^3 + \frac{8}{3} x^3 \right] \, dx = \frac{3}{4} \left[2 \left(\frac{x^4}{4} \right|_0^1 \right) + \frac{8}{3} \left(\frac{x^4}{4} \right|_0^1 \right]
\]
More examples of double integrals

Example

Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_R x \rho(x, y) \, dy \, dx,
\bar{r}_y = \frac{1}{M} \int \int_R y \rho(x, y) \, dy \, dx.
$$

Solution: Recall: $M = \frac{4}{3}$ and $\bar{r}_x = \frac{3}{4}$.

$$
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y) y \, dy \, dx = \frac{3}{4} \int_0^1 \left[x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) + \left(\frac{y^3}{3} \bigg|_0^{2x} \right) \right] \, dx
$$

$$
\bar{r}_y = \frac{3}{4} \int_0^1 \left[2x^3 + \frac{8}{3}x^3 \right] \, dx = \frac{3}{4} \left[2 \left(\frac{x^4}{4} \bigg|_0^1 \right) + \frac{8}{3} \left(\frac{x^4}{4} \bigg|_0^1 \right) \right]
$$

$$
\bar{r}_y = \frac{3}{4} \left[\frac{1}{2} + \frac{2}{3} \right]
$$
More examples of double integrals

Example

Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers

$$
\bar{r}_x = \frac{1}{M} \int_R x\rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int\int_R y\rho(x, y) \, dy \, dx.
$$

Solution: Recall: $M = \frac{4}{3}$ and $\bar{r}_x = \frac{3}{4}$.

$$
\bar{r}_y = \frac{1}{M} \int_0^1 \int_0^{2x} (x + y)y \, dy \, dx = \frac{3}{4} \int_0^1 \left[x \left(\frac{y^2}{2} \bigg|_0^{2x} \right) + \left(\frac{y^3}{3} \bigg|_0^{2x} \right) \right] \, dx
$$

$$
\bar{r}_y = \frac{3}{4} \int_0^1 \left[2x^3 + \frac{8}{3}x^3 \right] \, dx
$$

$$
\bar{r}_y = \frac{3}{4} \left[\frac{1}{2} + \frac{2}{3} \right] = \frac{3}{4} \frac{7}{6}
$$
More examples of double integrals

Example

Given the function \(\rho(x, y) = x + y \), the number \(M \) computed in the previous example, and the triangle with boundaries \(y = 0, \ x = 1 \) and \(y = 2x \), find the numbers

\[
\bar{r}_x = \frac{1}{M} \int_{R} x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int \int_{R} y \rho(x, y) \, dy \, dx.
\]

Solution: Recall: \(M = \frac{4}{3} \) and \(\bar{r}_x = \frac{3}{4} \).

\[
\bar{r}_y = \frac{1}{M} \int_{0}^{1} \int_{0}^{2x} (x + y)y \, dy \, dx = \frac{3}{4} \int_{0}^{1} \left[x \left(\frac{y^2}{2} \bigg|_{0}^{2x} \right) + \left(\frac{y^3}{3} \bigg|_{0}^{2x} \right) \right] \, dx
\]

\[
\bar{r}_y = \frac{3}{4} \int_{0}^{1} \left[2x^3 + \frac{8}{3}x^3 \right] \, dx = \frac{3}{4} \left[2\left(\frac{x^4}{4} \bigg|_{0}^{1} \right) + \frac{8}{3}\left(\frac{x^4}{4} \bigg|_{0}^{1} \right) \right]
\]

\[
\bar{r}_y = \frac{3}{4} \left[\frac{1}{2} + \frac{2}{3} \right] = \frac{3}{4} \cdot \frac{7}{6} \Rightarrow \bar{r}_y = \frac{7}{8}.
\]
More examples of double integrals

Definition

The centroid of a region R in the plane is the vector \mathbf{c} given by

$$
\mathbf{c} = \frac{1}{A(R)} \iiint_{R} \langle x, y \rangle \, dx \, dy,
$$

where $A(R) = \iiint_{R} \, dx \, dy$.

Remark:

\mathbf{c} can be seen as the center of mass vector of region R when the mass density is constant.

When the mass density is constant, it cancels out from the numerator and denominator of the center of mass.
More examples of double integrals

Definition
The centroid of a region R in the plane is the vector \mathbf{c} given by

$$\mathbf{c} = \frac{1}{A(R)} \iint_R \langle x, y \rangle \, dx \, dy,$$

where $A(R) = \iint_R \, dx \, dy$.

Remark:
- The centroid of a region can be seen as the center of mass vector of that region in the case that the mass density is constant.
More examples of double integrals

Definition

The *centroid* of a region R in the plane is the vector c given by

$$c = \frac{1}{A(R)} \iint_R \langle x, y \rangle \, dx \, dy,$$

where $A(R) = \iint_R dx \, dy$.

Remark:

- The centroid of a region can be seen as the center of mass vector of that region in the case that the mass density is constant.
- When the mass density is constant, it cancels out from the numerator and denominator of the center of mass.
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, \ x = 1 \) and \(y = 2x \).
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} \, dy \, dx$$
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx$$
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1$$
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, \ x = 1 \) and \(y = 2x \).

Solution: The area of the triangle is

\[
A(R) = \int_0^1 \int_0^{2x} dy \ dx = \int_0^1 2x \ dx = x^2 \bigg|_0^1 \Rightarrow A(R) = 1.
\]
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, \ x = 1 \) and \(y = 2x \).

Solution: The area of the triangle is

\[
A(R) = \int_0^1 \int_0^{2x} dy \ dx = \int_0^1 2x \ dx = x^2 \bigg|_0^1 \quad \Rightarrow \quad A(R) = 1.
\]

Therefore, the centroid vector components are given by

\[
c_x = \int_0^1 \int_0^{2x} x \ dy \ dx
\]
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, \ x = 1 \) and \(y = 2x \).

Solution: The area of the triangle is

\[
A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \quad \Rightarrow \quad A(R) = 1.
\]

Therefore, the centroid vector components are given by

\[
c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx
\]
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \Rightarrow A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right)$$
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, x = 1 \) and \(y = 2x \).

Solution: The area of the triangle is

\[
A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \quad \Rightarrow \quad A(R) = 1.
\]

Therefore, the centroid vector components are given by

\[
c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2\left(\frac{x^3}{3}\right) \bigg|_0^1 \quad \Rightarrow \quad c_x = \frac{2}{3}.
\]
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \Rightarrow A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right) \Rightarrow c_x = \frac{2}{3}.$$
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \Big|_0^1 \Rightarrow A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \right) \Big|_0^1 \Rightarrow c_x = \frac{2}{3}.$$

$$c_y = \int_0^1 \int_0^{2x} y \, dy \, dx = \int_0^1 \left(\frac{y^2}{2} \right) \Big|_0^{2x} \, dx$$
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \quad \Rightarrow \quad A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right) \quad \Rightarrow \quad c_x = \frac{2}{3}.$$

$$c_y = \int_0^1 \int_0^{2x} y \, dy \, dx = \int_0^1 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \, dx = \int_0^1 2x^2 \, dx$$
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \quad \Rightarrow \quad A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right) \quad \Rightarrow \quad c_x = \frac{2}{3}.$$

$$c_y = \int_0^1 \int_0^{2x} y \, dy \, dx = \int_0^1 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right)$$
More examples of double integrals

Example
Find the centroid of the triangle inside \(y = 0, \ x = 1 \) and \(y = 2x \).

Solution: The area of the triangle is

\[
A(R) = \int_0^1 \int_0^{2x} dy \ dx = \int_0^1 2x \ dx = x^2 \bigg|_0^1 \implies A(R) = 1.
\]

Therefore, the centroid vector components are given by

\[
c_x = \int_0^1 \int_0^{2x} x \ dy \ dx = \int_0^1 2x^2 \ dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right) \implies c_x = \frac{2}{3}.
\]

\[
c_y = \int_0^1 \int_0^{2x} y \ dy \ dx = \int_0^1 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \ dx = \int_0^1 2x^2 \ dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right)
\]

so \(c_y = \frac{2}{3} \).
More examples of double integrals

Example
Find the centroid of the triangle inside $y = 0$, $x = 1$ and $y = 2x$.

Solution: The area of the triangle is

$$A(R) = \int_0^1 \int_0^{2x} \, dy \, dx = \int_0^1 2x \, dx = x^2 \bigg|_0^1 \Rightarrow A(R) = 1.$$

Therefore, the centroid vector components are given by

$$c_x = \int_0^1 \int_0^{2x} x \, dy \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right) \Rightarrow c_x = \frac{2}{3}.$$

$$c_y = \int_0^1 \int_0^{2x} y \, dy \, dx = \int_0^1 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \, dx = \int_0^1 2x^2 \, dx = 2 \left(\frac{x^3}{3} \bigg|_0^1 \right)$$

so $c_y = \frac{2}{3}$. We conclude, $c = \frac{2}{3} \langle 1, 1 \rangle$. △
Remark: The moment of inertia of an object is a measure of the resistance of the object to changes in its rotation along a particular axis of rotation.
More examples of double integrals

Remark: The moment of inertia of an object is a measure of the resistance of the object to changes in its rotation along a particular axis of rotation.

Definition
The moment of inertia about the x-axis and the y-axis of a region R in the plane having mass density $\rho : R \subset \mathbb{R}^2 \to \mathbb{R}$ are given by, respectively,

\[
I_x = \iint_R y^2 \rho(x, y) \, dx \, dy, \quad I_y = \iint_R x^2 \rho(x, y) \, dx \, dy.
\]
More examples of double integrals

Remark: The moment of inertia of an object is a measure of the resistance of the object to changes in its rotation along a particular axis of rotation.

Definition

The *moment of inertia* about the x-axis and the y-axis of a region R in the plane having mass density $\rho : R \subset \mathbb{R}^2 \to \mathbb{R}$ are given by, respectively,

$$I_x = \iint_R y^2 \rho(x, y) \, dx \, dy, \quad I_y = \iint_R x^2 \rho(x, y) \, dx \, dy.$$

If M denotes the total mass of the region, then the *radii of gyration* about the x-axis and the y-axis are given by

$$R_x = \sqrt{I_x/M}, \quad R_y = \sqrt{I_y/M}.$$
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution:
The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2 (x + y) \, dy \, dx$$

$$= \int_0^1 \left[x^3 \left|_0^{2x} \right. \right] \, dx$$

$$= \int_0^1 4x^4 \, dx$$

$$= 4 \left[\frac{x^5}{5} \right]_0^1$$

$$= \frac{4}{5}.$$

Since the mass of the region is $M = \frac{4}{3}$, the radius of gyration along the x-axis is $R_x = \sqrt{\frac{I_x}{M}} = \sqrt{\frac{4}{3 \cdot 5}}$, that is,$R_x = \sqrt{\frac{3}{5}}$.
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx$$
The moment of inertia of an object.

Example

Find the moment of inertia and the radius of gyration about the \(x \)-axis of the triangle with boundaries \(y = 0, \ x = 1 \) and \(y = 2x \), and mass density \(\rho(x, y) = x + y \).

Solution: The moment of inertia \(I_x \) is given by

\[
I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_{0}^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_{0}^{2x} \right) \right] \, dx
\]
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx$$

$$I_x = \int_0^1 4x^4 \, dx$$
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries \(y = 0, \ x = 1 \) and \(y = 2x \), and mass density \(\rho(x, y) = x + y \).

Solution: The moment of inertia \(I_x \) is given by

\[
I_x = \int_0^1 \int_0^{2x} x^2 (x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx
\]

\[
I_x = \int_0^1 4x^4 \, dx = 4 \left(\frac{x^5}{5} \bigg|_0^1 \right)
\]
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx$$

$$I_x = \int_0^1 4x^4 \, dx = 4 \left(\frac{x^5}{5} \bigg|_0^1 \right) \quad \Rightarrow \quad I_x = \frac{4}{5}.$$
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x}\right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x}\right) \right] \, dx$$

$$I_x = \int_0^1 4x^4 \, dx = 4 \left(\frac{x^5}{5} \bigg|_0^1 \right) \Rightarrow I_x = \frac{4}{5}.$$

Since the mass of the region is $M = 4/3$, the radius of gyration along the x-axis is $R_x = \sqrt{I_x/M}$.
The moment of inertia of an object.

Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx$$

$$I_x = \int_0^1 4x^4 \, dx = 4 \left(\frac{x^5}{5} \bigg|_0^1 \right) \Rightarrow I_x = \frac{4}{5}.$$

Since the mass of the region is $M = 4/3$, the radius of gyration along the x-axis is $R_x = \sqrt{I_x/M} = \sqrt{\frac{4}{5} \cdot \frac{3}{4}}$,

$\Rightarrow R_x = \frac{\sqrt{15}}{10}$. \hspace{1cm} \Box$
Example
Find the moment of inertia and the radius of gyration about the x-axis of the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, and mass density $\rho(x, y) = x + y$.

Solution: The moment of inertia I_x is given by

$$I_x = \int_0^1 \int_0^{2x} x^2(x + y) \, dy \, dx = \int_0^1 \left[x^3 \left(y \bigg|_0^{2x} \right) + x^2 \left(\frac{y^2}{2} \bigg|_0^{2x} \right) \right] \, dx$$

$$I_x = \int_0^1 4x^4 \, dx = 4 \left(\frac{x^5}{5} \bigg|_0^1 \right) \Rightarrow I_x = \frac{4}{5}.$$

Since the mass of the region is $M = 4/3$, the radius of gyration along the x-axis is $R_x = \sqrt{I_x/M} = \sqrt{\frac{4}{5} \cdot \frac{3}{4}}$, that is, $R_x = \sqrt{\frac{3}{5}}$. \triangledown
Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.
Review: Polar coordinates

Definition
The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) defined by the picture.
Definition
The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) defined by the picture.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P = (r, \theta)$ are given by

$$x = r \cos(\theta), \quad y = r \sin(\theta).$$
Review: Polar coordinates

Definition
The polar coordinates of a point \(P \in \mathbb{R}^2 \) is the ordered pair \((r, \theta)\) defined by the picture.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point \(P = (r, \theta) \) are given by
\[
x = r \cos(\theta), \quad y = r \sin(\theta).
\]
The polar coordinates of a point \(P = (x, y) \) in the first or fourth quadrants are given by
\[
r = \sqrt{x^2 + y^2}, \quad \theta = \arctan \left(\frac{y}{x} \right).
\]
Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- **Double integrals in disk sections.**
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.
- Double integrals in arbitrary regions.
Double integrals on disk sections

Theorem

If \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in the region

\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}
\]

where \(0 \leq \theta_0 \leq \theta_1 \leq 2\pi \), then the double integral of function \(f \) in that region can be expressed in polar coordinates as follows,

\[
\iint_R f \, dA = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} f(r, \theta) \, r \, dr \, d\theta.
\]

Remark:

- Disk sections in polar coordinates are analogous to rectangular sections in Cartesian coordinates.
- The boundaries of each domain, a rectangle in Cartesian and a disk section in polar coordinates, are defined by a constant value of a coordinate.
- Notice the extra factor \(r \) on the right-hand side above.
Double integrals on disk sections

Theorem
If \(f : R \subset \mathbb{R}^2 \to \mathbb{R} \) is continuous in the region
\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}
\]
where \(0 \leq \theta_0 \leq \theta_1 \leq 2\pi \), then the double integral of function \(f \) in
that region can be expressed in polar coordinates as follows,
\[
\iint_R f \, dA = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} f(r, \theta) \, r \, dr \, d\theta.
\]

Remark:

- Disk sections in polar coordinates are the analogous to rectangular sections in Cartesian coordinates.
Double integrals on disk sections

Theorem

If \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in the region

\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \; \theta \in [\theta_0, \theta_1]\}
\]

where \(0 \leq \theta_0 \leq \theta_1 \leq 2\pi \), then the double integral of function \(f \) in that region can be expressed in polar coordinates as follows,

\[
\iint_R f \, dA = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} f(r, \theta) \, r \, dr \, d\theta.
\]

Remark:

- Disk sections in polar coordinates are the analogous to rectangular sections in Cartesian coordinates.
- The boundaries of each domain, a rectangle in Cartesian and a disk section in polar coordinates, are defined by a constant value of a coordinate.
Double integrals on disk sections

Theorem

If \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in the region

\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}
\]

where \(0 \leq \theta_0 \leq \theta_1 \leq 2\pi \), then the double integral of function \(f \) in that region can be expressed in polar coordinates as follows,

\[
\iint_R f \, dA = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} f(r, \theta) \, r \, dr \, d\theta.
\]

Remark:

- Disk sections in polar coordinates are the analogous to rectangular sections in Cartesian coordinates.
- The boundaries of each domain, a rectangle in Cartesian and a disk section in polar coordinates, are defined by a constant value of a coordinate.
- Notice the extra factor \(r \) on the right-hand side above.
Double integrals on disk sections

Remark:
Disk sections in polar coordinates are analogous to rectangular sections in Cartesian coordinates.
Double integrals on disk sections

Remark:
Disk sections in polar coordinates are analogous to rectangular sections in Cartesian coordinates.

\[
\begin{align*}
&\ x_0 \leq x \leq x_1, \\
&\ y_0 \leq y \leq y_1.
\end{align*}
\]
Double integrals on disk sections

Remark:
Disk sections in polar coordinates are analogous to rectangular sections in Cartesian coordinates.

\begin{align*}
x_0 \leq x \leq x_1, \\
y_0 \leq y \leq y_1.
\end{align*}

\begin{align*}
 r_0 \leq r \leq r_1, \\
 \theta_0 \leq \theta \leq \theta_1.
\end{align*}
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\[R = \{ (r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1] \}. \]

Evaluate that area in the particular case of a disk with radius \(R \).
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \theta \in [\theta_0, \theta_1]\}. \]

Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \, dr) \, d\theta
\]
Double integrals on disk sections

Example

Find the area of an arbitrary circular section
\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \theta \in [\theta_0, \theta_1]\}. \]
Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \, dr) \, d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \right|_{r_0}^{r_1} \right) \, d\theta,
\]

The case of a disk is:

\(\theta_0 = 0, \theta_1 = 2\pi, r_0 = 0 \) and \(r_1 = R \).

In that case we re-obtain the usual formula
\[A = \pi R^2. \]
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\} \]

Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \ dr) \ d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \big|_{r_0}^{r_1} \right) \ d\theta,
\]

\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] \ d\theta
\]
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \theta \in [\theta_0, \theta_1]\} \].

Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \, dr) \, d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \right|_{r_0}^{r_1} \right) \, d\theta,
\]

\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2}[(r_1)^2 - (r_0)^2] \, d\theta \quad \Rightarrow \quad A = \frac{1}{2}[(r_1)^2 - (r_0)^2](\theta_1 - \theta_0).
\]
Double integrals on disk sections

Example
Find the area of an arbitrary circular section
\(R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \theta \in [\theta_0, \theta_1]\} \).
Evaluate that area in the particular case of a disk with radius \(R \).

Solution:
\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \, dr) \, d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \bigg|_{r_0}^{r_1} \right) \, d\theta,
\]
\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2} [(r_1)^2 - (r_0)^2] \, d\theta \quad \Rightarrow \quad A = \frac{1}{2} [(r_1)^2 - (r_0)^2] (\theta_1 - \theta_0).
\]
The case of a disk is:
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\(R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\} \).

Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \ dr) \ d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \right)_{r_0}^{r_1} \ d\theta,
\]

\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] \ d\theta \quad \Rightarrow \quad A = \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] (\theta_1 - \theta_0).
\]

The case of a disk is: \(\theta_0 = 0 \),
Double integrals on disk sections

Example

Find the area of an arbitrary circular section
$R = \{(r, \theta) \in \mathbb{R}^2 : \ r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}$.
Evaluate that area in the particular case of a disk with radius R.

Solution:

$$A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \ dr) \ d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \bigg|_0^{r_1} \right) \ d\theta,$$

$$A = \int_{\theta_0}^{\theta_1} \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] \ d\theta \quad \Rightarrow \quad A = \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] (\theta_1 - \theta_0).$$

The case of a disk is: $\theta_0 = 0, \ \theta_1 = 2\pi,$
Double integrals on disk sections

Example
Find the area of an arbitrary circular section
\(R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\} \).
Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \ dr) \ d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \right)_{r_0}^{r_1} \ d\theta,
\]

\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2} [(r_1)^2 - (r_0)^2] \ d\theta \quad \Rightarrow \quad A = \frac{1}{2} [(r_1)^2 - (r_0)^2] (\theta_1 - \theta_0).
\]

The case of a disk is: \(\theta_0 = 0, \ \theta_1 = 2\pi, \ r_0 = 0 \)
Double integrals on disk sections

Example

Find the area of an arbitrary circular section

\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}. \]

Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \, dr) \, d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \bigg|_{r_0}^{r_1} \right) \, d\theta, \]

\[A = \int_{\theta_0}^{\theta_1} \frac{1}{2} [(r_1)^2 - (r_0)^2] \, d\theta \quad \Rightarrow \quad A = \frac{1}{2} [(r_1)^2 - (r_0)^2] (\theta_1 - \theta_0). \]

The case of a disk is: \(\theta_0 = 0, \ \theta_1 = 2\pi, \ r_0 = 0 \) and \(r_1 = R \).
Double integrals on disk sections

Example

Find the area of an arbitrary circular section
\[R = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_0, r_1], \ \theta \in [\theta_0, \theta_1]\}. \]
Evaluate that area in the particular case of a disk with radius \(R \).

Solution:

\[
A = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} (r \ dr) \ d\theta = \int_{\theta_0}^{\theta_1} \left(\frac{r^2}{2} \bigg|_{r_0}^{r_1} \right) \ d\theta,
\]

\[
A = \int_{\theta_0}^{\theta_1} \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] \ d\theta \quad \Rightarrow \quad A = \frac{1}{2} \left[(r_1)^2 - (r_0)^2 \right] (\theta_1 - \theta_0).
\]

The case of a disk is: \(\theta_0 = 0, \ \theta_1 = 2\pi, \ r_0 = 0 \) and \(r_1 = R \).

In that case we re-obtain the usual formula \(A = \pi R^2 \). \(\triangle \)
Double integrals on disk sections

Example

Find the integral of \(f(r, \theta) = r^2 \cos(\theta) \) in the disk
\[R = \{ (r, \theta) \in \mathbb{R}^2 : r \in [0, 1], \ \theta \in [0, \pi/4] \}. \]
Example
Find the integral of \(f(r, \theta) = r^2 \cos(\theta) \) in the disk
\(R = \{(r, \theta) \in \mathbb{R}^2 : r \in [0, 1], \ \theta \in [0, \pi/4]\} \).

Solution:
\[
\int_0^{\pi/4} \int_0^1 r^2 \cos(\theta) (r \, dr \, d\theta),
\]
Double integrals on disk sections

Example
Find the integral of \(f(r, \theta) = r^2 \cos(\theta) \) in the disk
\(R = \{(r, \theta) \in \mathbb{R}^2 : r \in [0, 1], \theta \in [0, \pi/4]\} \).

Solution:

\[
\int_R \int f \, dA = \int_0^{\pi/4} \int_0^1 r^2 \cos(\theta) (r \, dr) \, d\theta,
\]

\[
\int_R \int f \, dA = \int_0^{\pi/4} \left(\frac{r^4}{4} \right)_{r=0}^{r=1} \cos(\theta) \, d\theta
\]
Double integrals on disk sections

Example
Find the integral of $f(r, \theta) = r^2 \cos(\theta)$ in the disk
$R = \{(r, \theta) \in \mathbb{R}^2 : r \in [0, 1], \theta \in [0, \pi/4]\}$.

Solution:
\[
\int\int_R f \, dA = \int_0^{\pi/4} \int_0^1 r^2 \cos(\theta)(r \, dr) \, d\theta,
\]
\[
\int\int_R f \, dA = \int_0^{\pi/4} \left(\frac{r^4}{4} \right)_{0}^{1} \cos(\theta) \, d\theta = \frac{1}{4} \sin(\theta) \bigg|_0^{\pi/4}.
\]
Double integrals on disk sections

Example
Find the integral of $f(r, \theta) = r^2 \cos(\theta)$ in the disk
$R = \{(r, \theta) \in \mathbb{R}^2 : r \in [0, 1], \theta \in [0, \pi/4]\}$.

Solution:

\[
\int \int_R f \, dA = \int_0^{\pi/4} \int_0^1 r^2 \cos(\theta) (r \, dr) \, d\theta,
\]

\[
\int \int_R f \, dA = \int_0^{\pi/4} \left(\frac{r^4}{4} \right) \bigg|_0^1 \cos(\theta) \, d\theta = \frac{1}{4} \sin(\theta) \bigg|_0^{\pi/4}.
\]

We conclude that $\int \int_R f \, dA = \sqrt{2}/8$. \(\triangleleft\)
Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.
Double integrals in arbitrary regions

Theorem

If the function \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in the region

\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [h_0(\theta), h_1(\theta)], \ \theta \in [\theta_0, \theta_1]\}.
\]

where \(0 \leq h_0(\theta) \leq h_1(\theta) \) are continuous functions defined on an interval \([\theta_0, \theta_1]\), then the integral of function \(f \) in \(R \) is given by

\[
\int_{\theta_0}^{\theta_1} \int_{h_0(\theta)}^{h_1(\theta)} f(r, \theta) \, r \, dr \, d\theta.
\]
Double integrals in arbitrary regions

Theorem

If the function \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in the region

\[
R = \{(r, \theta) \in \mathbb{R}^2 : r \in [h_0(\theta), h_1(\theta)], \ \theta \in [\theta_0, \theta_1]\}.
\]

where \(0 \leq h_0(\theta) \leq h_1(\theta) \) are continuous functions defined on an interval \([\theta_0, \theta_1]\), then the integral of function \(f \) in \(R \) is given by

\[
\int\int_R f(r, \theta) \, dA = \int_{\theta_0}^{\theta_1} \int_{h_0(\theta)}^{h_1(\theta)} f(r, \theta) r \, dr \, d\theta.
\]
Double integrals in arbitrary regions

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution:
We first show that these curves are actually circles.

$r = \cos(\theta) \iff r^2 = r \cos(\theta) \iff x^2 + y^2 = x$.

Completing the square in x we obtain $(x - \frac{1}{2})^2 + y^2 = \left(\frac{1}{2}\right)^2$.

Analogously, $r = \sin(\theta)$ is the circle $x^2 + (y - \frac{1}{2})^2 = \left(\frac{1}{2}\right)^2$.

$\sqrt{1/2} \quad \sqrt{1/2}$

$r = \sin(0) \quad r = \cos(0)$
Double integrals in arbitrary regions

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first show that these curves are actually circles.
Double integrals in arbitrary regions

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first show that these curves are actually circles.

\[r = \cos(\theta) \]
Double integrals in arbitrary regions

Example

Find the area of the region bounded by the curves \(r = \cos(\theta) \) and \(r = \sin(\theta) \).

Solution: We first show that these curves are actually circles.

\[
\begin{align*}
 r = \cos(\theta) & \iff r^2 = r \cos(\theta) \\
\end{align*}
\]
Double integrals in arbitrary regions

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first show that these curves are actually circles.

\[
r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r \cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.
\]
Double integrals in arbitrary regions

Example

Find the area of the region bounded by the curves \(r = \cos(\theta) \) and \(r = \sin(\theta) \).

Solution: We first show that these curves are actually circles.

\[
 r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r \cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.
\]

Completing the square in \(x \) we obtain

\[
 \left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2.
\]
Double integrals in arbitrary regions

Example

Find the area of the region bounded by the curves \(r = \cos(\theta) \) and \(r = \sin(\theta) \).

Solution: We first show that these curves are actually circles.

\[
 r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r \cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.
\]

Completing the square in \(x \) we obtain

\[
 \left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2.
\]

Analogously, \(r = \sin(\theta) \) is the circle

\[
 x^2 + \left(y - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2.
\]
Double integrals in arbitrary regions

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first show that these curves are actually circles.

$$r = \cos(\theta) \iff r^2 = r \cos(\theta) \iff x^2 + y^2 = x.$$

Completing the square in x we obtain

$$(x - \frac{1}{2})^2 + y^2 = \left(\frac{1}{2}\right)^2.$$

Analogously, $r = \sin(\theta)$ is the circle

$$x^2 + \left(y - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2.$$
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta$
Double integrals in arbitrary regions.

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta$;
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta$;

$A = \int_0^{\pi/4} \frac{1}{2} [1 - \cos(2\theta)] \, d\theta$
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta$;

$A = \int_0^{\pi/4} \frac{1}{2} [1 - \cos(2\theta)] \, d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/4}$.
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves \(r = \cos(\theta) \) and \(r = \sin(\theta) \).

Solution: \[
A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta; \\
A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] \, d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/4}; \\
A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right]
\]
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] \, d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/4};$$

$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4}$$
Double integrals in arbitrary regions.

Example
Find the area of the region bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: $A = 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta$;

$A = \int_0^{\pi/4} \frac{1}{2} [1 - \cos(2\theta)] \, d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/4};$

$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4} \quad \Rightarrow \quad A = \frac{1}{8}(\pi - 2).$
Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves \(r = \cos(\theta) \) and \(r = \sin(\theta) \).

Solution: \(\begin{align*}
A &= 2 \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta; \\
A &= \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] \, d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \right]_0^{\pi/4}; \\
A &= \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4} \quad \Rightarrow \quad A = \frac{1}{8}(\pi - 2).
\end{align*} \)

Also works: \(\begin{align*}
A &= \int_0^{\pi/4} \int_0^{\sin(\theta)} r \, dr \, d\theta + \int_{\pi/4}^{\pi/2} \int_0^{\cos(\theta)} r \, dr \, d\theta.
\end{align*} \)
Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- **Changing Cartesian integrals into polar integrals.**
- Computing volumes using double integrals.
Changing Cartesian integrals into polar integrals

Theorem
If \(f : D \subset \mathbb{R}^2 \to \mathbb{R} \) is a continuous function, and \(f(x, y) \) represents the function values in Cartesian coordinates, then holds

\[
\int\int_D f(x, y) \, dx \, dy = \int\int_D f(r \cos(\theta), r \sin(\theta)) \, r \, dr \, d\theta.
\]
Changing Cartesian integrals into polar integrals

Theorem
If $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is a continuous function, and $f(x, y)$ represents the function values in Cartesian coordinates, then holds

$$\int\int_D f(x, y) \, dx \, dy = \int\int_D f(r \cos(\theta), r \sin(\theta))r \, dr \, d\theta.$$

Example
Compute the integral of $f(x, y) = x^2 + 2y^2$ on $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \quad 0 \leq x, \quad 1 \leq x^2 + y^2 \leq 2\}$.
Changing Cartesian integrals into polar integrals

Theorem

If $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is a continuous function, and $f(x, y)$ represents the function values in Cartesian coordinates, then holds

$$\int \int_D f(x, y) \, dx \, dy = \int \int_D f(r \cos(\theta), r \sin(\theta))r \, dr \, d\theta.$$

Example

Compute the integral of $f(x, y) = x^2 + 2y^2$ on $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\}$.

Solution: First, transform Cartesian into polar coordinates: $x = r \cos(\theta), \ y = r \sin(\theta)$.

Changing Cartesian integrals into polar integrals

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is a continuous function, and \(f(x, y) \) represents the function values in Cartesian coordinates, then holds

\[
\int\int_D f(x, y) \, dx \, dy = \int\int_D f(r \cos(\theta), r \sin(\theta)) \, r \, dr \, d\theta.
\]

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\} \).

Solution: First, transform Cartesian into polar coordinates: \(x = r \cos(\theta), \ y = r \sin(\theta) \). Since \(f(x, y) = (x^2 + y^2) + y^2 \),
Changing Cartesian integrals into polar integrals

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is a continuous function, and \(f(x, y) \) represents the function values in Cartesian coordinates, then holds

\[
\int \int_D f(x, y) \, dx \, dy = \int \int_D f(r \cos(\theta), r \sin(\theta)) r \, dr \, d\theta.
\]

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2 \} \).

Solution: First, transform Cartesian into polar coordinates:
\(x = r \cos(\theta), \ y = r \sin(\theta) \). Since \(f(x, y) = (x^2 + y^2) + y^2 \),

\[
f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta).
\]
Changing Cartesian integrals into polar integrals

Example
Compute the integral of $f(x, y) = x^2 + 2y^2$ on $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\}$.

Solution: We computed: $f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta)$.
Changing Cartesian integrals into polar integrals

Example
Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\[D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\} \]

Solution: We computed: \(f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta) \).
Changing Cartesian integrals into polar integrals

Example

Compute the integral of $f(x, y) = x^2 + 2y^2$ on $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\}$.

Solution: We computed: $f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta)$.

The region is

$$D = \left\{ (r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \frac{\pi}{2}, \ 1 \leq r \leq \sqrt{2} \right\}$$
Changing Cartesian integrals into polar integrals

Example
Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\[D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \quad 0 \leq x, \quad 1 \leq x^2 + y^2 \leq 2 \} \].

Solution: We computed:
\(f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta) \).

The region is
\[D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \frac{\pi}{2}, \quad 1 \leq r \leq \sqrt{2} \} \]

\[
\int \int_D f(r, \theta) \, dA = \int_0^{\pi/2} \int_1^{\sqrt{2}} r^2(1 + \sin^2(\theta)) \, r \, dr \, d\theta,
\]
Changing Cartesian integrals into polar integrals

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\} \).

Solution: We computed:
\(f(r \cos(\theta), r \sin(\theta)) = r^2 + r^2 \sin^2(\theta) \).

The region is
\(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \frac{\pi}{2}, \ 1 \leq r \leq \sqrt{2}\} \)

\[
\iint_D f(r, \theta) \, dA = \int_0^{\pi/2} \int_1^{\sqrt{2}} r^2 (1 + \sin^2(\theta)) \, r \, dr \, d\theta,
\]

\[
\iint_D f(r, \theta) \, dA = \left[\int_0^{\pi/2} (1 + \sin^2(\theta)) \, d\theta \right] \left[\int_1^{\sqrt{2}} r^3 \, dr \right].
\]
Changing Cartesian integrals into polar integrals

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on \(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2 \} \).

Solution:

\[
\iint_D f(r, \theta) \, dA = \left[\int_0^{\pi/2} \left(1 + \sin^2(\theta) \right) \, d\theta \right] \left[\int_1^{\sqrt{2}} r^3 \, dr \right].
\]
Changing Cartesian integrals into polar integrals

Example
Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\(D = \{ (x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2 \} \).

Solution:

\[
\int \int_D f(r, \theta) \, dA = \left[\int_0^{\pi/2} (1 + \sin^2(\theta)) \, d\theta \right] \left[\int_1^{\sqrt{2}} r^3 \, dr \right] .
\]

\[
\int \int_D f(r, \theta) \, dA = \left[(\theta \bigg|_0^{\pi/2}) + \int_0^{\pi/2} \frac{1}{2} (1 - \cos(2\theta)) \, d\theta \right] \frac{1}{4} (r^4 \bigg|_1^{\sqrt{2}}) .
\]
Changing Cartesian integrals into polar integrals

Example
Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\} \).

Solution:

\[
\begin{align*}
\int \int_D f(r, \theta) dA &= \left[\int_0^{\pi/2} (1 + \sin^2(\theta)) \ d\theta \right] \left[\int_1^{\sqrt{2}} r^3 \ dr \right].
\end{align*}
\]

\[
\begin{align*}
\int \int_D f(r, \theta) dA &= \left[\left(\theta \bigg|_0^{\pi/2} \right) + \int_0^{\pi/2} \frac{1}{2} (1 - \cos(2\theta)) \ d\theta \right] \frac{1}{4} (r^4 \bigg|_1^{\sqrt{2}}) \\
\int \int_D f(r, \theta) dA &= \left[\frac{\pi}{2} + \frac{1}{2} \theta \bigg|_0^{\pi/2} - \frac{1}{4} \sin(2\theta) \bigg|_0^{\pi/2} \right] \frac{3}{4}
\end{align*}
\]

We conclude:

\[
\int \int_D f(r, \theta) dA = \frac{9}{16} \pi.
\]
Changing Cartesian integrals into polar integrals

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\(D = \{ (x, y) \in \mathbb{R}^2 : 0 \leq y, 0 \leq x, \quad 1 \leq x^2 + y^2 \leq 2 \} \).

Solution:

\[
\iint_D f(r, \theta) \, dA = \left[\int_0^{\pi/2} (1 + \sin^2(\theta)) \, d\theta \right] \left[\int_1^{\sqrt{2}} r^3 \, dr \right].
\]

\[
\iint_D f(r, \theta) \, dA = \left[\left. \theta \right|_0^{\pi/2} \right] + \int_0^{\pi/2} \frac{1}{2} (1 - \cos(2\theta)) \, d\theta \left. \frac{1}{4} r^4 \right|_1^{\sqrt{2}}
\]

\[
\iint_D f(r, \theta) \, dA = \left[\frac{\pi}{2} + \frac{1}{2} \left(\theta \right|_0^{\pi/2} \right) - \frac{1}{4} \left(\sin(2\theta) \right|_0^{\pi/2} \right] \frac{3}{4} = \left[\frac{\pi}{2} + \frac{\pi}{4} \right] \frac{3}{4}.
\]
Changing Cartesian integrals into polar integrals

Example

Compute the integral of \(f(x, y) = x^2 + 2y^2 \) on
\(D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y, \ 0 \leq x, \ 1 \leq x^2 + y^2 \leq 2\} \).

Solution: \[
\int\int_D f(r, \theta)\,dA = \left[\int_0^{\pi/2} (1 + \sin^2(\theta)) \, d\theta\right] \left[\int_1^{\sqrt{2}} r^3 \, dr\right].
\]

\[
\int\int_D f(r, \theta)\,dA = \left[\left(\theta\right|_0^{\pi/2}\right) + \int_0^{\pi/2} \frac{1}{2} (1 - \cos(2\theta)) \, d\theta\right] \frac{1}{4} \left(r^4\right|_1^{\sqrt{2}}
\]

\[
\int\int_D f(r, \theta)\,dA = \left[\frac{\pi}{2} + \frac{1}{2} (\theta\right|_0^{\pi/2}) - \frac{1}{4} \left(\sin(2\theta)\right|_0^{\pi/2})\right] \frac{3}{4} = \left[\frac{\pi}{2} + \frac{\pi}{4}\right] \frac{3}{4}.
\]

We conclude: \[
\int\int_D f(r, \theta)\,dA = \frac{9}{16} \pi.
\]
Changing Cartesian integrals into polar integrals

Example

Integrate $f(x, y) = e^{-(x^2+y^2)}$ on the domain $D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\}$.
Example
Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain
\(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is
Changing Cartesian integrals into polar integrals

Example
Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain \(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\iint_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} \, r \, dr \, d\theta.
\]
Changing Cartesian integrals into polar integrals

Example
Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain \(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\int \int_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} \, r \, dr \, d\theta.
\]

Substitute \(u = r^2 \),
Changing Cartesian integrals into polar integrals

Example
Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain \(D = \{(r, \theta) \in R^2 : 0 \leq \theta \leq \pi, 0 \leq r \leq 2 \} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\int \int_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} r \, dr \, d\theta.
\]

Substitute \(u = r^2 \), hence \(du = 2r \, dr \),
Changing Cartesian integrals into polar integrals

Example

Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain
\(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\int \int_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} r \, dr \, d\theta.
\]

Substitute \(u = r^2 \), hence \(du = 2r \, dr \), we obtain

\[
\int \int_D f(x, y) \, dx \, dy = \frac{1}{2} \int_0^\pi \int_0^4 e^{-u} du \, d\theta.
\]
Changing Cartesian integrals into polar integrals

Example

Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain
\(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\int \int_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} \, r \, dr \, d\theta.
\]

Substitute \(u = r^2 \), hence \(du = 2r \, dr \), we obtain

\[
\int \int_D f(x, y) \, dx \, dy = \frac{1}{2} \int_0^\pi \int_0^4 e^{-u} \, du \, d\theta = \frac{1}{2} \int_0^\pi \left(-e^{-u} \right|_0^4) \, d\theta.
\]
Changing Cartesian integrals into polar integrals

Example
Integrate \(f(x, y) = e^{-(x^2+y^2)} \) on the domain \(D = \{(r, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq \pi, \ 0 \leq r \leq 2\} \).

Solution: Since \(f(r \cos(\theta), r \sin(\theta)) = e^{-r^2} \), the double integral is

\[
\iint_D f(x, y) \, dx \, dy = \int_0^\pi \int_0^2 e^{-r^2} r \, dr \, d\theta.
\]

Substitute \(u = r^2 \), hence \(du = 2r \, dr \), we obtain

\[
\iint_D f(x, y) \, dx \, dy = \frac{1}{2} \int_0^\pi \int_0^4 e^{-u} \, du \, d\theta = \frac{1}{2} \int_0^\pi \left(-e^{-u} \right|_0^4 \right) \, d\theta.
\]

We conclude:

\[
\iint_D f(x, y) \, dx \, dy = \frac{\pi}{2} \left(1 - \frac{1}{e^4} \right).
\]

\(\triangle \)
Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- **Computing volumes using double integrals.**
Computing volumes using double integrals

Example

Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: Let us first draw the sets that form the volume we are interested to compute.
Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: Let us first draw the sets that form the volume we are interested to compute.

$$z = \pm \sqrt{1 - r^2},$$
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: Let us first draw the sets that form the volume we are interested to compute.

\[z = \pm \sqrt{1 - r^2}, \]
\[z = r. \]
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: The integration region can be decomposed as follows:
Computing volumes using double integrals

Example

Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: The integration region can be decomposed as follows:
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: The integration region can be decomposed as follows:
Computing volumes using double integrals

Example

Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: The integration region can be decomposed as follows:

The volume we are interested to compute is:

$$V = \int_0^{2\pi} \int_0^{r_0} \sqrt{1 - r^2} (rdr) d\theta - \int_0^{2\pi} \int_0^{r_0} r (rdr) d\theta.$$
Computing volumes using double integrals

Example

Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: The integration region can be decomposed as follows:

![Diagram of sphere and cone](image)

The volume we are interested to compute is:

\[
V = \int_0^{2\pi} \int_0^{r_0} \sqrt{1 - r^2} (rdr)d\theta - \int_0^{2\pi} \int_0^{r_0} r (rdr)d\theta.
\]

We need to find \(r_0 \), the intersection of the cone and the sphere.
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.
Computing volumes using double integrals

Example

Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.

$$\sqrt{1 - r_0^2} = r_0$$
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.

$$\sqrt{1 - r_0^2} = r_0 \iff 1 - r_0^2 = r_0^2$$
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: We find \(r_0 \), the intersection of the cone and the sphere.

\[
\sqrt{1 - r_0^2} = r_0 \iff 1 - r_0^2 = r_0^2 \iff 2r_0^2 = 1;
\]
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.

$$\sqrt{1 - r_0^2} = r_0 \iff 1 - r_0^2 = r_0^2 \iff 2r_0^2 = 1;$$

that is, $r_0 = 1/\sqrt{2}$.
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.

\[\sqrt{1 - r_0^2} = r_0 \iff 1 - r_0^2 = r_0^2 \iff 2r_0^2 = 1; \]

that is, $r_0 = 1/\sqrt{2}$. Therefore

\[V = \int_0^{2\pi} \int_0^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) \, d\theta - \int_0^{2\pi} \int_0^{1/\sqrt{2}} r (r \, dr) \, d\theta. \]
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: We find r_0, the intersection of the cone and the sphere.

$$\sqrt{1 - r_0^2} = r_0 \quad \Leftrightarrow \quad 1 - r_0^2 = r_0^2 \quad \Leftrightarrow \quad 2r_0^2 = 1;$$

that is, $r_0 = 1/\sqrt{2}$. Therefore

$$V = \int_0^{2\pi} \int_0^{1/\sqrt{2}} \sqrt{1 - r^2} \, (r \, dr) \, d\theta - \int_0^{2\pi} \int_0^{1/\sqrt{2}} r \, (r \, dr) \, d\theta.$$

$$V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} \, (r \, dr) - \int_0^{1/\sqrt{2}} r \, (r \, dr) \right].$$
Computing volumes using double integrals

Example
Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

Solution: $V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) - \int_0^{1/\sqrt{2}} r \, (r \, dr) \right]$.
Example

Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: \(V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} \, (r \, dr) - \int_0^{1/\sqrt{2}} r \, (r \, dr) \right] \).

Use the substitution \(u = 1 - r^2 \), so \(du = -2r \, dr \).
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: \(V = 2\pi \left[\int_{0}^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) - \int_{0}^{1/\sqrt{2}} r (r \, dr) \right] \).

Use the substitution \(u = 1 - r^2 \), so \(du = -2r \, dr \). We obtain,

\[
V = 2\pi \left[\frac{1}{2} \int_{1/2}^{1} u^{1/2} \, du - \frac{1}{3} r^3 \bigg|_{0}^{1/\sqrt{2}} \right],
\]
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: \(V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) - \int_0^{1/\sqrt{2}} r (r \, dr) \right] \).

Use the substitution \(u = 1 - r^2 \), so \(du = -2r \, dr \). We obtain,

\[
V = 2\pi \left[\frac{1}{2} \int_{1/\sqrt{2}}^1 u^{1/2} \, du - \frac{1}{3} r^3 \bigg|_0^{1/\sqrt{2}} \right],
\]

\[
V = 2\pi \left[\frac{1}{2} \frac{2}{3} u^{3/2} \bigg|_{1/\sqrt{2}}^1 - \frac{1}{3} \frac{1}{2^{3/2}} \right].
\]
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1 \) and the cone \(z = \sqrt{x^2 + y^2} \).

Solution: \(V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) - \int_0^{1/\sqrt{2}} r (r \, dr) \right] \).

Use the substitution \(u = 1 - r^2 \), so \(du = -2r \, dr \). We obtain,

\[
V = 2\pi \left[\frac{1}{2} \int_{1/2}^1 u^{1/2} \, du - \frac{1}{3} r^3 \bigg|_{0}^{1/\sqrt{2}} \right],
\]

\[
V = 2\pi \left[\frac{1}{2} \cdot \frac{2}{3} u^{3/2} \bigg|_{1/2}^1 - \frac{1}{3} \cdot \frac{1}{2^{3/2}} \right] = \frac{2\pi}{3} \left[1 - \frac{1}{2^{3/2}} - \frac{1}{2^{3/2}} \right],
\]
Computing volumes using double integrals

Example
Find the volume between the sphere \(x^2 + y^2 + z^2 = 1\) and the cone \(z = \sqrt{x^2 + y^2}\).

Solution: \(V = 2\pi \left[\int_0^{1/\sqrt{2}} \sqrt{1 - r^2} (r \, dr) - \int_0^{1/\sqrt{2}} r (r \, dr) \right].\)

Use the substitution \(u = 1 - r^2\), so \(du = -2r \, dr\). We obtain,

\[
V = 2\pi \left[\frac{1}{2} \int_{1/2}^1 u^{1/2} \, du - \frac{1}{3} r^3 \bigg|_0^{1/\sqrt{2}} \right],
\]

\[
V = 2\pi \left[\frac{1}{2} \frac{2}{3} u^{3/2} \bigg|_{1/2}^1 - \frac{1}{3} \frac{1}{2^{3/2}} \right] = \frac{2\pi}{3} \left[1 - \frac{1}{2^{3/2}} - \frac{1}{2^{3/2}}\right],
\]

We conclude: \(V = \frac{\pi}{3} \left(2 - \sqrt{2} \right).\) \(\triangle\)