Math 234, Practice Test #3

Show your work in all the problems.

1.

Find the volume of the region bounded above by the paraboloid z = 9—
2%2—1y2, below by the xy-plane and lying outside the cylinder 22 +y? = 1.

. Evaluate the integral by changing to polar coordinates
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Describe the region of integration. Convert the integral to spherical
coordinates and evaluate it
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Sketch the region of integration, and write an integral with the order
of integration reversed. Do not evaluate the integral.
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Find the centroid of the triangular region cut from the first quadrant
by the line z 4+ y = 3.



Solutions

1. The most convenient coordinates for this problem are cylindrical coordi-
nates x = rcosf, y = rsin 6. We have to figure out when the paraboloid
intersects the xy-plane. This is the case for 0 = z = 9 — 22 — 92, i
2?2 +9y?> =9 or r = 3. The integral is then given by
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2. The equations x = ++/1 — y? are equivalent to 22 + y? = 1 which de-
scribes a circle with radius 1 centered at the origin. In polar coordinates
x =rcosf, y =rsinf this is given by r = 1. Hence
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(substitute u = r* + 1, du = 2rdr)
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Recall from Calculus II that the integral of the logarithm function is
calculated as follows:

/ln(:c)d:c = /1 In(x)dz

(integration by parts du = 1dx, v = In(z),
dv = dx/x u=1x)

= zln(x /d:c

= zln(x) —x+C

3. The equation z = /22 + y? describes a cone in upper half space z > 0
with tip at the origin and opening angle of 7/4. The region of integra-
tion is bounded below by the cone and above by the horizontal plane
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z = 1. In spherical coordinates the plane z = 1 corresponds to

1=2=pcos¢ie p=secao.

The converted integral is then
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4. The region of integration is the region enclosed by the parabola y =
4 — 2% and the line y = 4+ 2x. Reversing the order of integration yields
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5. The area of the triangle equals 9/2.
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We compute the first moments
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and

The center of mass is then given by

(z,y) = (My/M, M,/M) = (1,1)



