MTH 234 Review for Exam 4

Sections 16.1-16.8.

50 minutes.

>

>

» 5 to 10 problems, similar to homework problem:s.
» No calculators, no notes, no books, no phones.
>

No green book needed.

Review for Exam 4

» (16.1) Line integrals.
> (16.2) Vector fields, work, circulation, flux (plane).
(16.3) Conservative fields, potential functions.
(16.4) The Green Theorem in a plane.
(16.5) Surface area.
(16.6) Surface integrals.
(16.7) The Stokes Theorem.
(16.8)

>
>
>
>
>
» (16.8) The Divergence Theorem.




Line integrals (16.1)

Example

Integrate the function f(x,y) = x3/y along the plane curve C
given by y = x?/2 for x € [0,2], from the point (0,0) to (2,2).

Solution: We have to compute | = / f ds, by that we mean
C

/f$_/) y(1)) I()] dt.

where r(t) = (x(t), y(t)) for t € [to, t1] is a parametrization of the
path C. In this case the path is given by the parabola y = x?/2, so
a simple parametrization is to use x = t, that is,

2

r(t):<t,%>, te0,2] = r(t)={(1,¢t).

Line integrals (16.1)

Example

Integrate the function f(x,y) = x3/y along the plane curve C
given by y = x?/2 for x € [0,2], from the point (0,0) to (2,2).

2
Solution: r(t) = <t, %> for t € [0,2], and ¥'(t) = (1, ¢t).

/fds—/ ) ¥ ()] dt = / 2/2\/mdt

2
/fds:/ 2t /14 t2dt, u=1+1t> du=2tdt.
C 0
/ / U2 2 32 3/2
f ds = du =3 ‘ (5 1).

We conclude that / fds= 3 (5\/5 — 1). <

C
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Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force F = (yz, zx, —xy) in a moving
particle along the curve r(t) = (t3, t2,t) for t € [0, 2].

Solution: The formula for the work done by a force on a particle
moving along C given by r(t) for t € [ty, t1] is

W:/CF-dr:/ttlF(t)-r’(t)dt.

In this case ¥'(t) = (3t2,2t,1) for t € [0,2]. We now need to
evaluate F along the curve, that is,

(3, t4, —t°).
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Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force F = (yz, zx, —xy) in a moving
particle along the curve r(t) = (t3, t?,t) for t € [0, 2].

Solution: F(t) = (t3,t*, —t°) and. ¥/(t) = (3t%,2t,1) for t € [0,2].
The Work done by the force on the particle is

t1 2
W:/ F(t)-r(t) dt:/ (£, %, —t°) - (3t%,2t,1) dt
to 0

2
4 2 2
W = /3t +2t° — ) dt = /4t5dt:—t6 = >2°
6 lo 3

We conclude that W = 27/3.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = (xy, y?, —yz) from the point
(0,0,0) to the point (1,1,1) along the curve of intersection of the

cylinder y = x? with the plane z = x.

Solution: The flow (also called circulation) of the field F along a
curve C parametrized by r(t) for t € [ty, t1] is given by

/CF-dr:/ttl F(t) - r'(t)dt.

We use t = x as the parameter of the curve r, so we obtain
r(t) = (t,t%,t), te€[0,1] = r(t)= (1,2t 1).

F(t) = (t(£%), (7%, —1%(t)) = F(r) = (£’ ¢", ).




Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = (xy, y2, —yz) from the point
(0,0,0) to the point (1,1,1) along the curve of intersection of the
cylinder y = x? with the plane z = x.

Solution: ¥'(t) = (1,2t,1) for t € [0,1] and F(t) = (3, t* —£3).

t1 1
/F-dr:/ F(t) - ¥ (t) dt:/ (t3,t%, —13) - (1,2t,1) dt,
C to 0

1 1 2 1
/F-dr:/(t3—|—2t5—t3)dt:/ 2t° dt = = t°| .
c 0 0 6 lo

We conclude that / F.-dr= %
C

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field F = (—x, (x — y)) across loop C given by
the circle r(t) = (acos(t), asin(t)) for t € [0, 27].

Solution: The flux (also normal flow) of the field F = (F, F,)
across a loop C parametrized by r(t) = (x(t), y(t)) for t € [to, t1]

is given by t
j{ F-nds= /t 1 [Fxy'(t) = F,xX/()] dt.
1 / / _ /
Recall that n = ol (y'(t),—x'(t)) and ds = |¢¥'(t)| dt, therefore
Fonds = (R Fy) - s (/(8).=(2) I (1) .

so we obtain F-nds = [F,y/(t) — F,x/'(t)] dt.




Vector fields, work, circulation, flux (plane) (16.2)

Example
Find the flux of the field F = (—x, (x — y)) across loop C given by
the circle r(t) = (acos(t), asin(t)) for t € [0, 27].

(5]
Solution: % F-nds= / [Foy'(t) — Fy X/ (t)] dt.
C t
We evaluate F along theoloop,

F(t) = (—acos(t),a[cos(t) —sin(t)]),

and compute ¥'(t) = (—asin(t), acos(t)). Therefore,

j{C F-nds= /o ' [—acos(t)acos(t) — a(cos(t) —sin(t))(—a)sin(t)] dt

27
j{ F.-nds = / [—a? cos?(t) + a° sin(t) cos(t) — a°sin’(t)] dt
c 0

Vector fields, work, circulation, flux (plane) (16.2)

Example
Find the flux of the field F = (—x, (x — y)) across loop C given by
the circle r(t) = (acos(t), asin(t)) for t € [0, 27].

Solution:

27
]{ F.-nds = / [—32 cos?(t) 4 a° sin(t) cos(t) — a° sin2(t)] dt.
C 0

]{ F-nds = a° /02”[_1 + sin(t) cos(t)] dt,

27
1
j{ F-nds= az/ [—1 + = sin(2t)} dt.
. 0 2

27
Since / sin(2t) dt = 0, we obtain % F.-nds = —27a°. <
0 C
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Conservative fields, potential functions (16.3)
Example

s the field F = (y sin(z), xsin(z), xy cos(z)) conservative?
If “yes”, then find the potential function.

Solution: We need to check the equations
oy F, =0,F,, O«F,=0,F, O«F,=0,Fx«.
0y F, = xcos(z) = 0,F,,
OxF, = y cos(z) = 0, F,

OxF, = sin(z) = 0, Fx.

Therefore, F is a conservative field, that means there exists a
scalar field f such that F = Vf. The equations for f are

Oxf = ysin(z), 0,f =xsin(z), 0,f = xycos(z).




Conservative fields, potential functions (16.3)

Example

s the field F = (ysin(z), xsin(z), xy cos(z)) conservative?
If “yes”, then find the potential function.

Solution: Oxf = ysin(z), 0,f = xsin(z), 0,f = xy cos(z).
Integrating in x the first equation we get
f(x,y,2z) = xysin(z) + g(y, z).
Introduce this expression in the second equation above,
oyf = xsin(z) + dyg = xsin(z) = 0,g(y,z) =0,
so g(y,z) = h(z). Thatis, f(x,y,z) = xysin(z) + h(z).
Introduce this expression into the last equation above,

0,f = xycos(z) + H'(z) = xycos(z) = H(z)=0 = h(z)=c.

We conclude that f(x,y,z) = xysin(z) + c. <

Conservative fields, potential functions (16.3)
Example
Compute | = /ysin(z) dx + xsin(z) dy + xy cos(z) dz, where C
given by r(t) :C(cos(27rt), 1+ t°, cos?(2mt)m/2) for t € [0, 1].

Solution: We know that the field F = (y sin(z), x sin(z), xy cos(z))
conservative, so there exists f such that F = Vf, or equivalently
df = ysin(z) dx + xsin(z) dy + xy cos(z) dz.

We have computed f already, f = xy sin(z) + c.
Since F is conservative, the integral / is path independent, and

(1,2,7/2)
| = / [y sin(z) dx + xsin(z) dy + xy cos(z) dz]
(1,1,7/2)

I = f(1,2,7/2) — £(1,1,7/2) = 2sin(r/2) —sin(r/2) = [ = 1.




Conservative fields, potential functions (16.3)

Example
Show that the differential form in the integral below is exact,

2
/{3X2 dx+z—dy+22ln(y) dz}, y > 0.
C y

2
Solution: We need to show that the field F = <3x2, Z—, 2z In(y)>
y

is conservative. It is, since,

_22

a,F,
d y

— 0,F,, O0xF, =0=0,F, 0.F,=0=20,F,

Therefore, exists a scalar field f such that F = Vf, or equivalently,

2
df = 3x2 dx + = dy 4+ 2zIn(y) dz.
y

Conservative fields, potential functions (16.3)

Example (1,-1,0)
Compute / :/ 2x cos(z) dx + zdy + (y — x*sin(z)) dz.
(0,0,0)

Solution: The integral is specified by the path end points. That
suggests that the vector field is a gradient field.

F = (2xcos(z),z, [y — x? sin(z)]) = Vf = (0xf, 0, f, 0;f).

2

Oxf =2xcos(z) = f=x“cos(z)+ g(y,2z).

Of =z=0,8 = g=yz+h(z) = f=x*cos(z) +yz+ h(z).
0,f =y —x?sin(z) = —x*sin(z) +y+H = H =0
Since f = x? cos(z) + yz + ¢, we obtain

(1’_150)
/:/ Vf-dr=f(1,-1,0) - £(0,0,0) = [=1._
(0,0,0)
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16.8) The Divergence Theorem.

The Green Theorem in a plane (16.4)

Example
Use the Green Theorem in the plane to evaluate the line integral

given by ]{[(6)/ + x) dx + (y + 2x) dy] on the circle C defined by
C
(x =1 +(y -3 =4

Solution: j{F-dr = //curlex dy; and curl F = (8xFy—8yFX).
C

S
Here F = ((6y + x), (¥ + 2x)). Since OxF, =2 and 0, F, = 6,
hence curl F =2 — 6 = —4. Green's Theorem implies

7{[(6)/+X)dx+(y—|—2x)dy] :7{F-dr://s(_4)dxdy_

Since the area of the disk S = {(x — 1)? + (y — 3)? < 4} is m(2?),

7§F.dr:—4//dxdy=—4(4w) - %F-dr:—167r.
C S C




The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of
F=(x—y?)i+ (x%+y)j through the ellipse 9x? 4 4y? = 36.

Solution: Recall: Y{F ‘nds = //diVFdx dy.
C S

Recall: divF = 0xF« + 0, F,. Here is simpler to compute the
right-hand side than the left-hand side. divF =1+1=2.
Green's Theorem implies

iF.ndSZ//R(Z)dxdy.ZQA(R)-

Since R is the ellipse x?/4 + y?/9 = 1, its area is A(R) = (2)(3).
We conclude
]{ F-nds=12n7. <
C
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Surface area (16.5)

Example
Set up the integral for the area of the surface cut from the
parabolic cylinder z = 4 — y?/4 by the planes x =0, x =1, z = 0.

Solution:

We must compute: A(S) = // do.
S
N
V- k|

Recall: f(x,y,z) = y?+ 4z — 16.

Vi =1{0,2y,4) = |Vf|=+16+4y?2 =24+ y2

Since R = [0, 1] x [—4,4], its normal vector is k and |V - k| = 4.
Then,

2\/4 + y2 L4 2/4+y2
://dedyﬁA(S):/ / SVETYT 4y .
R 4 0 —4 4 4

Recall do =

dx dy, with k L R.
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Surface integrals (16.6)

Example

Integrate the function g(x,y, z) = x+/4 + y? over the surface cut
from the parabolic cylinder z = 4 — y? /4 by the planes x = 0,
x=1and z=0.

Solution:

We must compute: | = //g do.
V]
ME k|

and in this case f(x,y,z) = y> + 4z — 16.

Vi =1(0,2y,4) = |Vf|=+v16+4y%2 =24+ y2

Since R = [0, 1] x [—4,4], its normal vector is k and |V - k| = 4.

Then, 5
//gdU://(X\/4—|—y2) 24%dxdy.
S R

Recall do = ————dxdy, with k L R

Surface integrals (16.6)

Example

Integrate the function g(x,y, z) = x+/4 + y? over the surface cut
from the parabolic cylinder z = 4 — y2/4 by the planes x = 0,
x=1and z=0.

2./4
Solution: //gda_//x 4+y 4—|—y dx dy.

1 1 [
//gdoz—//x(4+y2)dxdy:—/ /x(4+y2)dxdy
s 2 /), 2 ) Jo
3 201

[l =3l Lol o] =1L
//Sgda:%2(42+§>%:8(1+§) N //sgdaz%'
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The Stokes Theorem (16.7)

Example
Use Stokes' Theorem to find the flux of V x F outward through

the surface S, where F = (—y, x, x?) and
S={x>+y?2=2a% zc[0,h}U{x®+y?><a% z=h}.

Solution: Recall: //(V x F)-ndo = j[ F-dr.
S C

The surface S is the cylinder walls and its cover at z = h.
Therefore, the curve C is the circle x2 + y2 —a%2atz=0.
That circle can be parametrized (counterclockwise) as
r(t) = (acos(t), asin(t)) for t € [0, 27].

//S(VxF)-ndJ:]éF-dr:/OMF(t)-r’(t)dt,

where F(t) = (—asin(t), acos(t), a® cos?(t)) and
r'(t) = (—asin(t), acos(t),0).




The Stokes Theorem (16.7)

Example

Use Stokes' Theorem to find the flux of V x F outward through

the surface S, where F = (—y, x, x?) and
S={x>+y?2=2% zc[0,h}U{x®+y?<a% z=h}.

Solution: F(t) = (—asin(t), acos(t), a® cos?(t)) and
r'(t) = (—asin(t), acos(t),0). Hence

//S(VxF)-nd0:/027TF(t)-r’(t)dt,

//S(V x F)-ndo = /027r(a2 sinz(t) + a° cos2(t)) dt — /027r 2 dt.

We conclude that //(V x F)-ndo = 2ra°.
S

Review for Exam 4
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The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field
F = (x? —2xy, 3xz) across the boundary of the region
D={x®>4+y?+22<4, x>0, y>0, z>0}.

Solution: Recall: //F-nda = ///(V F)dv
S D

V-F=0F+0,F +0,F, =2x—-2x+3x = V- -F=3x.

J[F-ndo= [[[(@-Frav = [[ sxaxay ez

It is convenient to use spherical coordinates:

/ / Fonde= /07/2 /OW/2 /02 [3psin() cos()] p* sin(¢) dp d¢ db.

The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field
F = (x?, —2xy, 3xz) across the boundary of the region
D={x>4+y?>+22<4, x>0, y>0, z>0}.

Solution:

// Fondo = / h / h / [3psin(é) cos()] 4 sin(6) dp s .

//SF-nda—[/ cos(0) dé [/0 sin2 d¢}{/023,03d,0}
//SF-nda—sm 2/2 %/0 (1 - cos(2¢)) d H )
//SF nda—()—< (12) = //F ndo = 3.




