
MTH 234 Review for Exam 4

I Sections 16.1-16.8.

I 50 minutes.

I 5 to 10 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.

Review for Exam 4

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area.

I (16.6) Surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



Line integrals (16.1)

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: We have to compute I =

∫
C

f ds, by that we mean

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt,

where r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] is a parametrization of the
path C . In this case the path is given by the parabola y = x2/2, so
a simple parametrization is to use x = t, that is,

r(t) =
〈
t,

t2

2

〉
, t ∈ [0, 2] ⇒ r′(t) = 〈1, t〉.

Line integrals (16.1)

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: r(t) =
〈
t,

t2

2

〉
for t ∈ [0, 2], and r′(t) = 〈1, t〉.

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt =

∫ 2

0

t3

t2/2

√
1 + t2 dt,

∫
C

f ds =

∫ 2

0
2t

√
1 + t2 dt, u = 1 + t2, du = 2t dt.

∫
C

f ds =

∫ 5

1
u1/2 du =

2

3
u3/2

∣∣∣5
1

=
2

3

(
53/2 − 1

)
.

We conclude that

∫
C

f ds =
2

3

(
5
√

5− 1
)
. C



Review for Exam 4

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area.

I (16.6) Surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force F = 〈yz , zx ,−xy〉 in a moving
particle along the curve r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution: The formula for the work done by a force on a particle
moving along C given by r(t) for t ∈ [t0, t1] is

W =

∫
C

F · dr =

∫ t1

t0

F(t) · r′(t) dt.

In this case r′(t) = 〈3t2, 2t, 1〉 for t ∈ [0, 2]. We now need to
evaluate F along the curve, that is,

F(t) = F
(
x(t), y(t)

)
= 〈t3, t4,−t5〉.



Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force F = 〈yz , zx ,−xy〉 in a moving
particle along the curve r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution: F(t) = 〈t3, t4,−t5〉 and. r′(t) = 〈3t2, 2t, 1〉 for t ∈ [0, 2].
The Work done by the force on the particle is

W =

∫ t1

t0

F(t) · r′(t) dt =

∫ 2

0
〈t3, t4,−t5〉 · 〈3t2, 2t, 1〉 dt

W =

∫ 2

0

(
3t5 + 2t5 − t5

)
dt =

∫ 2

0
4t5 dt =

4

6
t6

∣∣∣2
0

=
2

3
26.

We conclude that W = 27/3.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: The flow (also called circulation) of the field F along a
curve C parametrized by r(t) for t ∈ [t0, t1] is given by∫

C

F · dr =

∫ t1

t0

F(t) · r′(t) dt.

We use t = x as the parameter of the curve r, so we obtain

r(t) = 〈t, t2, t〉, t ∈ [0, 1] ⇒ r′(t) = 〈1, 2t, 1〉.

F(t) = 〈t(t2), (t2)2,−t2(t)〉 ⇒ F(t) = 〈t3, t4,−t3〉.



Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: r′(t) = 〈1, 2t, 1〉 for t ∈ [0, 1] and F(t) = 〈t3, t4,−t3〉.∫
C

F · dr =

∫ t1

t0

F(t) · r′(t) dt =

∫ 1

0
〈t3, t4,−t3〉 · 〈1, 2t, 1〉 dt,

∫
C

F · dr =

∫ 1

0

(
t3 + 2t5 − t3

)
dt =

∫ 1

0
2t5 dt =

2

6
t6

∣∣∣1
0
.

We conclude that

∫
C

F · dr =
1

3
. C

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution: The flux (also normal flow) of the field F = 〈Fx ,Fy 〉
across a loop C parametrized by r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1]
is given by ∮

C

F · n ds =

∫ t1

t0

[
Fxy

′(t)− Fyx ′(t)
]
dt.

Recall that n =
1

|r′(t)|
〈y ′(t),−x ′(t)〉 and ds = |r′(t)| dt, therefore

F · n ds =
(
〈Fx ,Fy 〉 ·

1

|r′(t)|
〈y ′(t),−x ′(t)〉

)
|r′(t)| dt,

so we obtain F · n ds =
[
Fxy

′(t)− Fyx ′(t)
]
dt.



Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution:

∮
C

F · n ds =

∫ t1

t0

[
Fxy

′(t)− Fyx ′(t)
]
dt.

We evaluate F along the loop,

F(t) = 〈−a cos(t), a
[
cos(t)− sin(t)

]
〉,

and compute r′(t) = 〈−a sin(t), a cos(t)〉. Therefore,∮
C

F · n ds =

∫ 2π

0

[
−a cos(t)a cos(t)− a

(
cos(t)− sin(t)

)
(−a) sin(t)

]
dt

∮
C

F · n ds =

∫ 2π

0

[
−a2 cos2(t) + a2 sin(t) cos(t)− a2 sin2(t)

]
dt

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution:∮
C

F · n ds =

∫ 2π

0

[
−a2 cos2(t) + a2 sin(t) cos(t)− a2 sin2(t)

]
dt.

∮
C

F · n ds = a2

∫ 2π

0

[
−1 + sin(t) cos(t)

]
dt,

∮
C

F · n ds = a2

∫ 2π

0

[
−1 +

1

2
sin(2t)

]
dt.

Since

∫ 2π

0
sin(2t) dt = 0, we obtain

∮
C

F · n ds = −2πa2. C
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Conservative fields, potential functions (16.3)
Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?
If “yes”, then find the potential function.

Solution: We need to check the equations

∂yFz = ∂zFy , ∂xFz = ∂zFx , ∂xFy = ∂yFx .

∂yFz = x cos(z) = ∂zFy ,

∂xFz = y cos(z) = ∂zFx ,

∂xFy = sin(z) = ∂yFx .

Therefore, F is a conservative field, that means there exists a
scalar field f such that F = ∇f . The equations for f are

∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).



Conservative fields, potential functions (16.3)

Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?
If “yes”, then find the potential function.

Solution: ∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).
Integrating in x the first equation we get

f (x , y , z) = xy sin(z) + g(y , z).

Introduce this expression in the second equation above,

∂y f = x sin(z) + ∂yg = x sin(z) ⇒ ∂yg(y , z) = 0,

so g(y , z) = h(z). That is, f (x , y , z) = xy sin(z) + h(z).
Introduce this expression into the last equation above,

∂z f = xy cos(z) + h′(z) = xy cos(z) ⇒ h′(z) = 0 ⇒ h(z) = c .

We conclude that f (x , y , z) = xy sin(z) + c . C

Conservative fields, potential functions (16.3)

Example

Compute I =

∫
C

y sin(z) dx + x sin(z) dy + xy cos(z) dz , where C

given by r(t) = 〈cos(2πt), 1 + t5, cos2(2πt)π/2〉 for t ∈ [0, 1].

Solution: We know that the field F = 〈y sin(z), x sin(z), xy cos(z)〉
conservative, so there exists f such that F = ∇f , or equivalently

df = y sin(z) dx + x sin(z) dy + xy cos(z) dz .

We have computed f already, f = xy sin(z) + c .
Since F is conservative, the integral I is path independent, and

I =

∫ (1,2,π/2)

(1,1,π/2)

[
y sin(z) dx + x sin(z) dy + xy cos(z) dz

]
I = f (1, 2, π/2)− f (1, 1, π/2) = 2 sin(π/2)− sin(π/2) ⇒ I = 1.



Conservative fields, potential functions (16.3)

Example

Show that the differential form in the integral below is exact,∫
C

[
3x2 dx +

z2

y
dy + 2z ln(y) dz

]
, y > 0.

Solution: We need to show that the field F =
〈
3x2,

z2

y
, 2z ln(y)

〉
is conservative. It is, since,

∂yFz =
2z

y
= ∂zFy , ∂xFz = 0 = ∂zFx , ∂xFy = 0 = ∂yFx .

Therefore, exists a scalar field f such that F = ∇f , or equivalently,

df = 3x2 dx +
z2

y
dy + 2z ln(y) dz .

Conservative fields, potential functions (16.3)

Example

Compute I =

∫ (1,−1,0)

(0,0,0)
2x cos(z) dx + z dy + (y − x2 sin(z)) dz .

Solution: The integral is specified by the path end points. That
suggests that the vector field is a gradient field.

F = 〈2x cos(z), z , [y − x2 sin(z)]〉 = ∇f = 〈∂x f , ∂y f , ∂z f 〉.

∂x f = 2x cos(z) ⇒ f = x2 cos(z) + g(y , z).

∂y f = z = ∂yg ⇒ g = yz + h(z) ⇒ f = x2 cos(z) + yz + h(z).

∂z f = y − x2 sin(z) = −x2 sin(z) + y + h′ ⇒ h′ = 0

Since f = x2 cos(z) + yz + c , we obtain

I =

∫ (1,−1,0)

(0,0,0)
∇f · dr = f (1,−1, 0)− f (0, 0, 0) ⇒ I = 1.C
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The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to evaluate the line integral

given by

∮
C

[
(6y + x) dx + (y + 2x) dy

]
on the circle C defined by

(x − 1)2 + (y − 3)2 = 4.

Solution:

∮
C

F · dr =

∫∫
S

curlF dx dy ; and curlF =
(
∂xFy −∂yFx

)
.

Here F = 〈(6y + x), (y + 2x)〉. Since ∂xFy = 2 and ∂yFx = 6,
hence curlF = 2− 6 = −4. Green’s Theorem implies∮

C

[
(6y + x) dx + (y + 2x) dy

]
=

∮
C

F · dr =

∫∫
S

(−4) dx dy .

Since the area of the disk S = {(x − 1)2 + (y − 3)2 6 4} is π(22),∮
C

F · dr = −4

∫∫
S

dx dy = −4(4π) ⇒
∮

C

F · dr = −16π.



The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of
F = (x − y2) i + (x2 + y) j through the ellipse 9x2 + 4y2 = 36.

Solution: Recall:

∮
C

F · n ds =

∫∫
S

divF dx dy .

Recall: divF = ∂xFx + ∂yFy . Here is simpler to compute the
right-hand side than the left-hand side. divF = 1 + 1 = 2.
Green’s Theorem implies∮

C

F · n ds =

∫∫
R

(2) dx dy . = 2A(R).

Since R is the ellipse x2/4 + y2/9 = 1, its area is A(R) = (2)(3)π.
We conclude ∮

C

F · n ds = 12π. C
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Surface area (16.5)

Example

Set up the integral for the area of the surface cut from the
parabolic cylinder z = 4− y2/4 by the planes x = 0, x = 1, z = 0.

Solution:

x
1

4

R

z

4

S

y

We must compute: A(S) =

∫∫
S

dσ.

Recall dσ =
|∇f |

|∇f · k|
dx dy , with k ⊥ R.

Recall: f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =
√

16 + 4y2 = 2
√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.
Then,

A(S) =

∫∫
R

2
√

4 + y2

4
dx dy ⇒ A(S) =

∫ 1

0

∫ 4

−4

2
√

4 + y2

4
dy dx .

C
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Surface integrals (16.6)
Example

Integrate the function g(x , y , z) = x
√

4 + y2 over the surface cut
from the parabolic cylinder z = 4− y2/4 by the planes x = 0,
x = 1 and z = 0.

Solution:

x
1

4

R

z

4

S

y

We must compute: I =

∫∫
S

g dσ.

Recall dσ =
|∇f |

|∇f · k|
dx dy , with k ⊥ R

and in this case f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =
√

16 + 4y2 = 2
√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.
Then, ∫∫

S

g dσ =

∫∫
R

(
x
√

4 + y2
) 2

√
4 + y2

4
dx dy .

Surface integrals (16.6)

Example

Integrate the function g(x , y , z) = x
√

4 + y2 over the surface cut
from the parabolic cylinder z = 4− y2/4 by the planes x = 0,
x = 1 and z = 0.

Solution:

∫∫
S

g dσ =

∫∫
R

(
x
√

4 + y2
) 2

√
4 + y2

4
dx dy .

∫∫
S

g dσ =
1

2

∫∫
R

x(4 + y2) dx dy =
1

2

∫ 4

−4

∫ 1

0
x(4 + y2) dx dy

∫∫
S

g dσ =
1

2

[∫ 4

−4
(4+y2) dy

][∫ 1

0
x dx

]
=

1

2

(
4y+

y3

3

)∣∣∣4
−4

(x2

2

)∣∣∣1
0∫∫

S

g dσ =
1

2
2
(
42 +

43

3

)1

2
= 8

(
1 +

4

3

)
⇒

∫∫
S

g dσ =
56

3
.
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The Stokes Theorem (16.7)

Example

Use Stokes’ Theorem to find the flux of ∇× F outward through
the surface S , where F = 〈−y , x , x2〉 and
S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: Recall:

∫∫
S

(∇× F) · n dσ =

∮
C

F · dr.

The surface S is the cylinder walls and its cover at z = h.
Therefore, the curve C is the circle x2 + y2 = a2 at z = 0.
That circle can be parametrized (counterclockwise) as
r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].∫∫

S

(∇× F) · n dσ =

∮
C

F · dr =

∫ 2π

0
F(t) · r′(t) dt,

where F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 and
r′(t) = 〈−a sin(t), a cos(t), 0〉.



The Stokes Theorem (16.7)

Example

Use Stokes’ Theorem to find the flux of ∇× F outward through
the surface S , where F = 〈−y , x , x2〉 and
S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 and
r′(t) = 〈−a sin(t), a cos(t), 0〉. Hence∫∫

S

(∇× F) · n dσ =

∫ 2π

0
F(t) · r′(t) dt,

∫∫
S

(∇× F) · n dσ =

∫ 2π

0

(
a2 sin2(t) + a2 cos2(t)

)
dt =

∫ 2π

0
a2 dt.

We conclude that

∫∫
S

(∇× F) · n dσ = 2πa2.
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The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field
F = 〈x2,−2xy , 3xz〉 across the boundary of the region
D = {x2 + y2 + z2 6 4, x > 0, y > 0, z > 0}.

Solution: Recall:

∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F)dv .

∇ · F = ∂xFx + ∂yFy + ∂zFz = 2x − 2x + 3x ⇒ ∇ · F = 3x .∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F)dv =

∫∫
D

3x dx dy dz .

It is convenient to use spherical coordinates:∫∫
S

F ·n dσ =

∫ π/2

0

∫ π/2

0

∫ 2

0

[
3ρ sin(φ) cos(φ)

]
ρ2 sin(φ) dρ dφ dθ.

The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field
F = 〈x2,−2xy , 3xz〉 across the boundary of the region
D = {x2 + y2 + z2 6 4, x > 0, y > 0, z > 0}.

Solution:∫∫
S

F ·n dσ =

∫ π/2

0

∫ π/2

0

∫ 2

0

[
3ρ sin(φ) cos(φ)

]
ρ2 sin(φ) dρ dφ dθ.

∫∫
S

F · n dσ =
[∫ π/2

0
cos(θ) dθ

][∫ π/2

0
sin2(φ) dφ

][∫ 2

0
3ρ3 dρ

]
∫∫

S

F · n dσ =
[
sin(θ)

∣∣∣π/2

0

][1

2

∫ π/2

0

(
1− cos(2φ)

)
dφ

][3

4
ρ4

∣∣2
0

]
∫∫

S

F · n dσ = (1)
1

2

(π

2

)
(12) ⇒

∫∫
S

F · n dσ = 3π.


