MTH 234 Review for Exam 4

- Sections 16.1-16.8.
- 50 minutes.
- 5 to 10 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Line integrals (16.1)

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.
Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$, so a simple parametrization is to use $x=t$, that is,

$$
\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle, \quad t \in[0,2] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1, t\rangle
$$

Line integrals (16.1)

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
\int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=\frac{2}{3}\left(5^{3 / 2}-1\right)
\end{gathered}
$$

We conclude that $\int_{C} f d s=\frac{2}{3}(5 \sqrt{5}-1)$.

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

In this case $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. We now need to evaluate \mathbf{F} along the curve, that is,

$$
\mathbf{F}(t)=\mathbf{F}(x(t), y(t))=\left\langle t^{3}, t^{4},-t^{5}\right\rangle .
$$

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and. $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}=\frac{2}{3} 2^{6}
\end{aligned}
$$

We conclude that $W=2^{7} / 3$.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\begin{gathered}
\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle \\
\mathbf{F}(t)=\left\langle t\left(t^{2}\right),\left(t^{2}\right)^{2},-t^{2}(t)\right\rangle \quad \Rightarrow \quad \mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t \\
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t=\int_{0}^{1} 2 t^{5} d t=\left.\frac{2}{6} t^{6}\right|_{0} ^{1}
\end{gathered}
$$

We conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\frac{1}{3}$.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t
$$

Recall that $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle$ and $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, therefore

$$
\mathbf{F} \cdot \mathbf{n} d s=\left(\left\langle F_{x}, F_{y}\right\rangle \cdot \frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle\right)\left|\mathbf{r}^{\prime}(t)\right| d t
$$

so we obtain $\mathbf{F} \cdot \mathbf{n} d s=\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.
We evaluate \mathbf{F} along the loop,

$$
\mathbf{F}(t)=\langle-a \cos (t), a[\cos (t)-\sin (t)]\rangle
$$

and compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle$. Therefore,

$$
\begin{aligned}
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}[-a \cos (t) a \cos (t)-a(\cos (t)-\sin (t))(-a) \sin (t)] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s= & \int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}[-1+\sin (t) \cos (t)] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}\left[-1+\frac{1}{2} \sin (2 t)\right] d t
\end{aligned}
$$

Since $\int_{0}^{2 \pi} \sin (2 t) d t=0$, we obtain $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=-2 \pi a^{2}$.

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Conservative fields, potential functions (16.3)

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x} .
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field, that means there exists a scalar field f such that $\mathbf{F}=\nabla f$. The equations for f are

$$
\partial_{x} f=y \sin (z), \quad \partial_{y} f=x \sin (z), \quad \partial_{z} f=x y \cos (z)
$$

Conservative fields, potential functions (16.3)

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$.
Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.
Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c .
$$

We conclude that $f(x, y, z)=x y \sin (z)+c$.

Conservative fields, potential functions (16.3)

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral l is path independent, and

$$
\begin{gathered}
I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
I=f(1,2, \pi / 2)-f(1,1, \pi / 2)=2 \sin (\pi / 2)-\sin (\pi / 2) \Rightarrow I=1
\end{gathered}
$$

Conservative fields, potential functions (16.3)

Example

Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=0=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=0=\partial_{y} F_{x}
$$

Therefore, exists a scalar field f such that $\mathbf{F}=\nabla f$, or equivalently,

$$
d f=3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z
$$

Conservative fields, potential functions (16.3)

Example
Compute $I=\int_{(0,0,0)}^{(1,-1,0)} 2 x \cos (z) d x+z d y+\left(y-x^{2} \sin (z)\right) d z$.
Solution: The integral is specified by the path end points. That suggests that the vector field is a gradient field.

$$
\begin{gathered}
\mathbf{F}=\left\langle 2 x \cos (z), z,\left[y-x^{2} \sin (z)\right]\right\rangle=\nabla f=\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle \\
\partial_{x} f=2 x \cos (z) \Rightarrow f=x^{2} \cos (z)+g(y, z) \\
\partial_{y} f=z=\partial_{y} g \Rightarrow g=y z+h(z) \Rightarrow f=x^{2} \cos (z)+y z+h(z) \\
\partial_{z} f=y-x^{2} \sin (z)=-x^{2} \sin (z)+y+h^{\prime} \Rightarrow h^{\prime}=0
\end{gathered}
$$

Since $f=x^{2} \cos (z)+y z+c$, we obtain

$$
I=\int_{(0,0,0)}^{(1,-1,0)} \nabla f \cdot d \mathbf{r}=f(1,-1,0)-f(0,0,0) \quad \Rightarrow \quad I=1
$$

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} d x d y$; and $\operatorname{curl} \mathbf{F}=\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right)$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, hence curl $\mathbf{F}=2-6=-4$. Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(-4) d x d y .
$$

Since the area of the disk $S=\left\{(x-1)^{2}+(y-3)^{2} \leqslant 4\right\}$ is $\pi\left(2^{2}\right)$,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=-4 \iint_{S} d x d y=-4(4 \pi) \quad \Rightarrow \quad \oint_{C} \mathbf{F} \cdot d \mathbf{r}=-16 \pi .
$$

The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of
$\mathbf{F}=\left(x-y^{2}\right) \mathbf{i}+\left(x^{2}+y\right) \mathbf{j}$ through the ellipse $9 x^{2}+4 y^{2}=36$.
Solution: Recall: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S} \operatorname{div} \mathbf{F} d x d y$.
Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}$. Here is simpler to compute the right-hand side than the left-hand side. $\operatorname{div} \mathbf{F}=1+1=2$.
Green's Theorem implies

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}(2) d x d y .=2 A(R)
$$

Since R is the ellipse $x^{2} / 4+y^{2} / 9=1$, its area is $A(R)=(2)(3) \pi$.
We conclude

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=12 \pi .
$$

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Surface area (16.5)

Example

Set up the integral for the area of the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0, x=1, z=0$. Solution:

We must compute: $A(S)=\iint_{S} d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$.
Recall: $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}}
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$.
Then,

$$
A(S)=\iint_{R} \frac{2 \sqrt{4+y^{2}}}{4} d x d y \Rightarrow A(S)=\int_{0}^{1} \int_{-4}^{4} \frac{2 \sqrt{4+y^{2}}}{4} d y d x
$$

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Surface integrals (16.6)

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$ and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}} .
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$.
Then,

$$
\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y .
$$

Surface integrals (16.6)

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& \iint_{S} g d \sigma=\frac{1}{2} 2\left(4^{2}+\frac{4^{3}}{3}\right) \frac{1}{2}=8\left(1+\frac{4}{3}\right) \quad \Rightarrow \quad \iint_{S} g d \sigma=\frac{56}{3}
\end{aligned}
$$

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Stokes Theorem (16.7)

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$.
Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$.
That circle can be parametrized (counterclockwise) as $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$.

The Stokes Theorem (16.7)

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$. Hence

$$
\begin{gathered}
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t \\
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi}\left(a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)\right) d t=\int_{0}^{2 \pi} a^{2} d t
\end{gathered}
$$

We conclude that $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=2 \pi a^{2}$.

Review for Exam 4

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area.
- (16.6) Surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region
$D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

$$
\begin{gathered}
\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iint_{D} 3 x d x d y d z
\end{gathered}
$$

It is convenient to use spherical coordinates:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

The Divergence Theorem (16.8)

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:
$\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta$.

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\int_{0}^{\pi / 2} \cos (\theta) d \theta\right]\left[\int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi\right]\left[\int_{0}^{2} 3 \rho^{3} d \rho\right] \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\left.\sin (\theta)\right|_{0} ^{\pi / 2}\right]\left[\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos (2 \phi)) d \phi\right]\left[\left.\frac{3}{4} \rho^{4}\right|_{0} ^{2}\right] \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=(1) \frac{1}{2}\left(\frac{\pi}{2}\right)(12) \Rightarrow \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=3 \pi .
\end{gathered}
$$

