
Review for Exam 2

I Tuesday Recitations: Sections 13.1-13.3. 14.1-14.6.

I Thursday Recitations: Sections 13.1-13.3. 14.1-14.7.

I 50 minutes.

I From five 10-minute problems to ten 5-minutes problems.

I Problems similar to homework problems.

I No calculators, no notes, no books, no phones.

Section 13.2: Projectile motion

Example

Find the position r and velocity functions v of a particle moving
with an acceleration a(t) = 〈0, 0,−10〉 m/sec2. The initial velocity
and position are, v(0) = 〈0, 2, 1〉 m/sec and r(0) = 〈0, 0, 2〉 m.

Solution: Since a(t) = 〈0, 0,−10〉,

v(t) = 〈v0x , v0y ,−10 t + v0z〉,
v(0) = 〈0, 2, 1〉,

}
⇒


v0x = 0,
v0y = 2,
v0z = 1.

The velocity is v(t) = 〈0, 2,−10 t + 1〉. the position is

r(t) = 〈r0x , 2t + r0y ,−5t2 + t + r0z〉,
r(0) = 〈0, 0, 2〉,

}
⇒


r0x = 0,
r0y = 0,
r0z = 2.

We conclude that r(t) = 〈0, 2t,−5t2 + t + 2〉. C



Section 13.2: Projectile motion

Example

Find the trajectory of the particle in the previous example.

Solution: Recall r(t) = 〈0, 2t,−5t2 + t + 2〉.

x(t) = 0, y(t) = 2t, z(t) = −5t2 + t + 2.

The trajectory is z(y) = −5

4
y2 +

y

2
+ 2.

y

2

z

parabola

Section 13.3

Example

Reparametrize with respect to its arclength, starting at t = 0, the
position function r corresponding to the acceleration
a(t) = 〈 [− sin(t)− cos(t)], [cos(t)− sin(t)], 0〉 and initial velocity
v0 = 〈1, 1, 1〉 and initial position r0 = 〈0, 0, 0〉.

Solution: First, we need to find r(t). Then, we reparametrize.

v(t) = 〈 [cos(t)− sin(t) + v0x ], [sin(t) + cos(t) + v0y ], v0z〉.

The initial condition implies

〈1 + v0x , 1 + v0y , v0z〉 = 〈1, 1, 1〉 ⇒ v0x = 0 = v0y , v0z = 1.

v(t) = 〈 [cos(t)− sin(t)], [sin(t) + cos(t)], 1〉.



Section 13.3

Example

Reparametrize with respect to its arclength, starting at t = 0, the
position function r corresponding to the acceleration
a(t) = 〈 [− sin(t)− cos(t)], [cos(t)− sin(t)], 0〉 and initial velocity
v0 = 〈1, 1, 1〉 and initial position r0 = 〈0, 0, 0〉.

Solution: Recall: v(t) = 〈 [cos(t)− sin(t)], [sin(t) + cos(t)], 1〉.

The position function is

r(t) = 〈 [sin(t) + cos(t) + r0x ], [− cos(t) + sin(t) + r0y ], t + r0z〉.

The initial condition implies

〈1 + r0x ,−1 + r0y , r0z〉 = 〈0, 0, 0〉 ⇒ r0x = −1, r0y = 1, r0z = 0.

r(t) = 〈 [sin(t) + cos(t)− 1], [− cos(t) + sin(t) + 1], t〉.

Section 13.3

Example

Reparametrize with respect to its arclength, starting at t = 0, the
position function r.

Solution: Recall: v(t) = 〈 [cos(t)− sin(t)], [sin(t) + cos(t)], 1〉,
and recall r(t) = 〈 [sin(t) + cos(t)− 1], [− cos(t) + sin(t) + 1], t〉.

Then, |v(t)|2 = [cos(t)− sin(t)]2 + [cos(t) + sin(t)]2 + 1

|v(t)|2 = cos2(t) + sin2(t)− 2 sin(t) cos(t)

+ cos2(t) + sin2(t) + 2 sin(t) cos(t) + 1

|v(t)| =
√

3, therefore `(t) =

∫ t

0

√
3 dτ implies ` =

√
3 t.

r̂(`) =
〈 [

sin
( `√

3

)
+cos(

`√
3

)
−1

]
,
[
− cos

( `√
3

)
+sin

( `√
3

)
+1

]
,

`√
3

〉
.



Section 13.3

Example

Reparametrize the curve r(t) =
〈3

2
sin(t2), 2t2,

3

2
cos(t2)

〉
with

respect to its arc length measured from t = 1 in the direction of
increasing t.

Solution:
We first compute the arc length function. We start with the
derivative

r′(t) = 〈3t cos(t2), 4t,−3 sin(t2)〉,

We now need its magnitude,

|r′(t)| =
√

9t2 cos2(t2) + 16t2 + 9 sin2(t2),

|r′(t)| =
√

9t2 + 16t2 =
(√

9 + 16
)
t ⇒ |r′(t)| = 5t.

Section 13.3

Example

Reparametrize the curve r(t) =
〈3

2
sin(t2), 2t2,

3

2
cos(t2)

〉
with

respect to its arc length measured from t = 1 in the direction of
increasing t.

Solution: Recall: |r′(t)| = 5t. The arc length function is

s(t) =

∫ t

1
5τ dτ =

5

2

(
τ2

∣∣∣t
1

)
=

5

2
(t2 − 1).

Inverting this function for t2, we obtain t2 =
2

5
s + 1.

The reparametrization of r(t) is given by

r̂(s) =
〈3

2
sin

(2

5
s + 1

)
, 2

(2

5
s + 1

)
,
3

2
cos

(2

5
s + 1

)〉
. C



Section 14.2

Example

Find an equation for the level surface of f (x , y , z) = z − x2 − y2

containing the point P0 = (3,−1, 1).

Solution: Any level surface is the set of points is space solution of

z − x2 − y2 = k, k ∈ R.

To find k, we evaluate the equation above at P0,

1− 9− 1 = k ⇒ k = −9.

We conclude that z − x2 − y2 = −9. C

Section 14.2

Example

Compute the limit lim
(x ,y)→(4,3)

√
x −

√
y + 1

x − y − 1
.

Solution: Remark: f (x , y) =

√
x −

√
y + 1

x − y − 1
is not defined at (4, 3).

Recall from Calculus I: Multiply by the conjugate.

f (x , y) =
[√x −

√
y + 1

x − y − 1

] [√x +
√

y + 1√
x +

√
y + 1

]

f (x , y) =

[
x − (y + 1)

]
(x − y − 1)

[√
x +

√
y + 1

] =
1√

x +
√

y + 1
.

We conclude that, lim
(x ,y)→(4,3)

f (x , y) =
1

4
. C



Section 14.2

Example
Compute the limit lim

(x ,y)→(0,0)

x2 + y2

xy
.

Solution: Remark: f (x , y) =
x2 + y2

xy
is not defined at (0, 0).

Recall: It is often easier to prove that a limit does not exist.

The two paths theorem. Paths x = 0 or y = 0 are not useful.
First path, y = x . Then

lim
x→0

f (x , x) = lim
x→0

x2 + x2

x2
= lim

x→0
2 = 2.

Second path, y = 2x . Then

lim
x→0

f (x , 2x) = lim
x→0

x2 + 4x2

x(2x)
= lim

x→0

5

2
=

5

2
.

Therefore, lim
(x ,y)→(0,0)

f (x , y) DNE. C

Section 14.3

Example

Given a function z defined by the equation xy + z3x − 2yz = 0,
find ∂xz in terms of x , y and z .

Solution: We use implicit differentiation:

y + z3 + 3z2 zx x − 2y zx = 0,

zx (3xz2 − 2y) = −y − z3

zx = − (y + z3)

(3xz2 − 2y)
. C



Section 14.4

Example

Given f (x , y) = exy , and the coordinate transformation
x = r cos(θ) and y = r sin(θ), find f̂r and f̂θ, where
f̂ (r , θ) = f (x(r , θ), y(r , θ)).

Solution: The chain rule implies

f̂r = fx xr + fy yr , f̂θ = fx xθ + fy yθ.

f̂r = yexy xr + xexyyr ⇒ f̂re
xy (y xr + x yr );

f̂r = er2 sin(θ) cos(θ)
[
r sin(θ) cos(θ) + r cos(θ) sin(θ)

]
.

f̂θ = yexy xθ + xexyyθ ⇒ f̂θ = exy (y xθ + x yθ).

f̂θ = er2 sin(θ) cos(θ)
[
−r2 sin(θ) sin(θ) + r2 cos(θ) cos(θ)

]
. C

Also: f̂r = r sin(2θ) er2 sin(2θ)/2, and f̂θ = r2 cos(2θ) er2 sin(2θ)/2.

Section 14.5

Example

Find all directions u such that (Duf )(1, 1) = 0, where

f (x , y) =
x2 − y2

x2 + y2
.

Solution: Recall: The Duf = 0 iff u ⊥ ∇f . The gradient is

fx =
2x(x2 + y2)

(x2 + y2)2
− (x2 − y2)2x

(x2 + y2)2
⇒ fx =

4xy2

(x2 + y2)2
.

fy =
−2y(x2 + y2)

(x2 + y2)2
− (x2 − y2)2y

(x2 + y2)2
⇒ fy =

−4yx2

(x2 + y2)2
.

∇f =
4xy

(x2 + y2)2
〈y ,−x〉. ⇒ (∇f )(1, 1) = 〈1,−1〉.



Section 14.5

Example

Find all directions u such that (Duf )(1, 1) = 0, where

f (x , y) =
x2 − y2

x2 + y2
.

Solution: Recall: (∇f )(1, 1) = 〈1,−1〉.

We find all u, unit, such that u ⊥ 〈1,−1〉.

〈ux , uy 〉 · 〈1,−1〉 = 0 ⇒ ux = uy .

Since u is unit, then

u2
x + u2

y = 1 ⇒ 2u2
x = 1 ⇒ ux = ± 1√

2
.

We conclude: u = ± 1√
2
〈1, 1〉. C

Section 14.5

Example

Find the direction of most rapid increase of the function
f (x , y , z) = ln(x3 + y3 − 1)− y + 3z at the point P0 = (1, 1, 4).

Solution: Recall: The direction of most rapid increase is the
direction of the gradient vector at P0.

∇f =
3x2

x3 + y3 − 1
i +

( 3y2

x3 + y3 − 1
− 1

)
j + 3k.

The direction of maximum increase is

(∇f )(1, 1, 4) = 〈3, 2, 3〉

C



Section 14.5
Example

(a) Find the direction in which f (x , y) = x2e3y decreases the most
rapidly at P0 = (−1, 0), and also find the directional derivative
of f (x , y) at P0 along that direction.

(b) Find the directional derivative of f (x , y) above at the point P0

in the direction given by v = 〈−1, 1〉.
Solution:
(a) The direction f decreases the most rapidly is given by −∇f ,

∇f (x , y) = 〈2xe3y , 3x2e3y 〉 ⇒ −∇f (−1, 0) = 〈2,−3〉.

The value of the directional derivative along this direction is,
−|∇f (−1, 0)| = −

√
9 + 4 = −

√
13.

(b) A unit vector along 〈−1, 1〉 is u =
1√
2
〈−1, 1〉, then,

Duf (−1, 0) = ∇f (−1, 0) · u = 〈−2, 3〉 · 1√
2
〈−1, 1〉 =

5√
2
. C

Section 14.6

Example

Find the linear approximation of f (x , y) = x cos(πy/2)− y2ex at
the point (0,−1), and use it to approximate f (0.1,−0.9).

Solution: f (x , y) = x cos(πy/2)− y2ex , f (0,−1) = −1.

fx(x , y) = cos(πy/2)− y2ex , fx(0,−1) = cos(−π/2)− 1 = −1.

fy (x , y) = −x sin(πy/2)
π

2
− 2yex fy (0,−1) = 2,

Then, the linear approximation L(x , y) is given by

L(x , y) = −(x − 0) + 2(y + 1)− 1, ⇒ L(x , y) = −x + 2y + 1.

The linear approximation of f (0.1,−0.9) is L(0.1,−0.9),

L(0.1,−0.9) = −0.1 + 2(0.1)− 1 = 0.1− 1 = −0.9. C



Section 14.6

Example

(a) Find the linear approximation L(x , y) of the function
f (x , y) = sin(2x + 3y) + 1 at the point (−3, 2).

(b) Use the approximation above to estimate the value of
f (−2.9, 2.1).

Solution:
(a) L(x , y) = fx(−3, 2) (x + 3) + fy (−3, 2) (y − 2) + f (−3, 2).

Since fx(x , y) = 2 cos(2x + 3y) and fy (x , y) = 3 cos(2x + 3y),

fx(−3, 2) = 2 cos(−6 + 6) = 2, fy (−3, 2) = 3 cos(−6 + 6) = 3,

f (−3, 2) = sin(−6 + 6) + 1 = 1.

the linear approximation is L(x , y) = 2(x + 3) + 3(y − 2) + 1.

Section 14.6

Example

(a) Find the linear approximation L(x , y) of the function
f (x , y) = sin(2x + 3y) + 1 at the point (−3, 2).

(b) Use the approximation above to estimate the value of
f (−2.9, 2.1).

Solution: Recall: L(x , y) = 2(x + 3) + 3(y − 2) + 1.

(b) We use L to find the a linear approximation to f (−2.9, 2.1).

We need to compute L(−2.9, 2.1).

L(−2.9, 2.1) = 2(−2.9 + 3) + 3(2.1− 2) + 2

L(−2.9, 2.1) = 2(0.1) + 3(0.1) + 1 ⇒ L(−2.9, 2.1) = 1.5.
C

Exact value is close to 1.479.



Section 14.7

Example

(a) Find all the critical points of f (x , y) = 12xy − 2x3 − 3y2.

(b) For each critical point of f , determine whether f has a local
maximum, local minimum, or saddle point at that point.

Solution:
(a) ∇f (x , y) = 〈12y − 6x2, 12x − 6y〉 = 〈0, 0〉, then,

x2 = 2y , y = 2x , ⇒ x(x − 4) = 0.

There are two solutions, x = 0 ⇒ y = 0, and x = 4 ⇒ y = 8.

That is, there are two critical points, (0, 0) and (4, 8).

Section 14.7

Example

(a) Find all the critical points of f (x , y) = 12xy − 2x3 − 3y2.

(b) For each critical point of f , determine whether f has a local
maximum, local minimum, or saddle point at that point.

Solution:
(b) Recalling ∇f (x , y) = 〈12y − 6x2, 12x − 6y〉, we compute

fxx = −12x , fyy = −6, fxy = 12.

D(x , y) = fxx fyy − (fxy )2 = 144
(x

2
− 1

)
,

Since D(0, 0) = −144 < 0, the point (0, 0) is a saddle point of f .

Since D(4, 8) = 144(2− 1) > 0, and fxx(4, 8) = (−12)4 < 0,

the point (4, 8) is a local maximum of f . C



Section 14.7

Example

Find the absolute maximum and absolute minimum of

f (x , y) = 2 + xy − 2x − 1

4
y2 in the closed triangular region with

vertices given by (0, 0), (1, 0), and (0, 2).

Solution:
We start finding the critical points inside the triangular region.

∇f (x , y) =
〈
y − 2, x − 1

2
y
〉

= 〈0, 0〉, ⇒ y = 2, y = 2x .

The solution is (1, 2). This point is outside in the triangular region
given by the problem, so there is no critical point inside the region.

Section 14.7

Example

Find the absolute maximum and absolute minimum of

f (x , y) = 2 + xy − 2x − 1

4
y2 in the closed triangular region with

vertices given by (0, 0), (1, 0), and (0, 2).

Solution:
We now find the candidates for absolute maximum and minimum
on the borders of the triangular region. We first record the
boundary vertices:

(0, 0) ⇒ f (0, 0) = 2,

(1, 0) ⇒ f (1, 0) = 0,

(0, 2) ⇒ f (0, 2) = 1.



Section 14.7

Example

Find the absolute maximum and absolute minimum of

f (x , y) = 2 + xy − 2x − 1

4
y2 in the closed triangular region with

vertices given by (0, 0), (1, 0), and (0, 2).

Solution:

I The horizontal side of the triangle, y = 0, x ∈ (0, 1). Since

g(x) = f (x , 0) = 2− 2x , ⇒ g ′(x) = −2 6= 0.

there are no candidates in this part of the boundary.

I The vertical side of the triangle is x = 0, y ∈ (0, 2). Then,

g(y) = f (0, y) = 2− 1

4
y2, ⇒ g ′(y) = −1

2
y = 0,

so y = 0 and we recover the point (0, 0).

Section 14.7
Example

Find the absolute maximum and absolute minimum of

f (x , y) = 2 + xy − 2x − 1

4
y2 in the closed triangular region with

vertices given by (0, 0), (1, 0), and (0, 2).

Solution:

I The hypotenuse of the triangle y = 2− 2x , x ∈ (0, 1). Then,

g(x) = f (x , 2− 2x) = 2 + x(2− 2x)− 2x − 1

4
(2− 2x)2,

= 2 + 2x − 2x2 − 2x − (x2 − 2x + 1),

= 1 + 2x − 3x2.

Then, g ′(x) = 2− 6x = 0 implies x =
1

3
, hence y =

4

3
. The

candidate is
(1

3
,
4

3

)
.



Section 14.7

Example

Find the absolute maximum and absolute minimum of

f (x , y) = 2 + xy − 2x − 1

4
y2 in the closed triangular region with

vertices given by (0, 0), (1, 0), and (0, 2).

Solution:

I Recall that we have obtained a candidate point
(1

3
,
4

3

)
. We

evaluate f at this point,

f
(1

3
,
4

3

)
= 2 +

4

9
− 2

3
− 1

4

16

9
=

4

3
.

Recalling that f (0, 0) = 2, f (1, 0) = 0, and f (0, 2) = 1, the
absolute maximum is at (0, 0), and the minimum is at (1, 0). C


