Review for Exam 2

- Tuesday Recitations: Sections 13.1-13.3. 14.1-14.6.
- Thursday Recitations: Sections 13.1-13.3. 14.1-14.7.
- 50 minutes.
- From five 10 -minute problems to ten 5-minutes problems.
- Problems similar to homework problems.
- No calculators, no notes, no books, no phones.

Section 13.2: Projectile motion

Example

Find the position \mathbf{r} and velocity functions \mathbf{v} of a particle moving with an acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle \mathrm{m} / \mathrm{sec}^{2}$. The initial velocity and position are, $\mathbf{v}(0)=\langle 0,2,1\rangle \mathrm{m} / \mathrm{sec}$ and $\mathbf{r}(0)=\langle 0,0,2\rangle \mathrm{m}$.

Solution: Since $\mathbf{a}(t)=\langle 0,0,-10\rangle$,

$$
\left.\begin{array}{rl}
\mathbf{v}(t)= & \left\langle v_{0 x}, v_{0 y},-10 t+v_{0 z}\right\rangle, \\
& \mathbf{v}(0)=\langle 0,2,1\rangle,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
v_{0 x}=0 \\
v_{0 y}=2 \\
v_{0 z}=1
\end{array}\right.
$$

The velocity is $\mathbf{v}(t)=\langle 0,2,-10 t+1\rangle$. the position is

$$
\left.\begin{array}{c}
\mathbf{r}(t)=\left\langle r_{0 x}, 2 t+r_{0 y},-5 t^{2}+t+r_{0 z}\right\rangle, \\
\mathbf{r}(0)=\langle 0,0,2\rangle,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
r_{0 x}=0 \\
r_{0 y}=0 \\
r_{0 z}=2
\end{array}\right.
$$

We conclude that $\mathbf{r}(t)=\left\langle 0,2 t,-5 t^{2}+t+2\right\rangle$.

Section 13.2: Projectile motion

Example

Find the trajectory of the particle in the previous example.
Solution: Recall $\mathbf{r}(t)=\left\langle 0,2 t,-5 t^{2}+t+2\right\rangle$.

$$
x(t)=0, \quad y(t)=2 t, \quad z(t)=-5 t^{2}+t+2
$$

The trajectory is $z(y)=-\frac{5}{4} y^{2}+\frac{y}{2}+2$.

Section 13.3

Example

Reparametrize with respect to its arclength, starting at $t=0$, the position function \mathbf{r} corresponding to the acceleration
$\mathbf{a}(t)=\langle[-\sin (t)-\cos (t)],[\cos (t)-\sin (t)], 0\rangle$ and initial velocity $\mathbf{v}_{0}=\langle 1,1,1\rangle$ and initial position $\mathbf{r}_{0}=\langle 0,0,0\rangle$.

Solution: First, we need to find $\mathbf{r}(t)$. Then, we reparametrize.

$$
\mathbf{v}(t)=\left\langle\left[\cos (t)-\sin (t)+v_{0 x}\right],\left[\sin (t)+\cos (t)+v_{0 y}\right], v_{0 z}\right\rangle .
$$

The initial condition implies

$$
\begin{aligned}
& \left\langle 1+v_{0 x}, 1+v_{0 y}, v_{0 z}\right\rangle=\langle 1,1,1\rangle \quad \Rightarrow \quad v_{0 x}=0=v_{0 y}, \quad v_{0 z}=1 . \\
& \mathbf{v}(t)=\langle[\cos (t)-\sin (t)],[\sin (t)+\cos (t)], 1\rangle .
\end{aligned}
$$

Section 13.3

Example

Reparametrize with respect to its arclength, starting at $t=0$, the position function \mathbf{r} corresponding to the acceleration $\mathbf{a}(t)=\langle[-\sin (t)-\cos (t)],[\cos (t)-\sin (t)], 0\rangle$ and initial velocity $\mathbf{v}_{0}=\langle 1,1,1\rangle$ and initial position $\mathbf{r}_{0}=\langle 0,0,0\rangle$.

Solution: Recall: $\mathbf{v}(t)=\langle[\cos (t)-\sin (t)],[\sin (t)+\cos (t)], 1\rangle$.
The position function is

$$
\mathbf{r}(t)=\left\langle\left[\sin (t)+\cos (t)+r_{0 x}\right],\left[-\cos (t)+\sin (t)+r_{0 y}\right], t+r_{0 z}\right\rangle
$$

The initial condition implies

$$
\begin{gathered}
\left\langle 1+r_{0 x},-1+r_{0 y}, r_{0 z}\right\rangle=\langle 0,0,0\rangle \Rightarrow r_{0 x}=-1, r_{0 y}=1, r_{0 z}=0 . \\
\mathbf{r}(t)=\langle[\sin (t)+\cos (t)-1],[-\cos (t)+\sin (t)+1], t\rangle .
\end{gathered}
$$

Section 13.3

Example

Reparametrize with respect to its arclength, starting at $t=0$, the position function \mathbf{r}.

Solution: Recall: $\mathbf{v}(t)=\langle[\cos (t)-\sin (t)],[\sin (t)+\cos (t)], 1\rangle$, and recall $\mathbf{r}(t)=\langle[\sin (t)+\cos (t)-1],[-\cos (t)+\sin (t)+1], t\rangle$.
Then, $|\mathbf{v}(t)|^{2}=[\cos (t)-\sin (t)]^{2}+[\cos (t)+\sin (t)]^{2}+1$

$$
\begin{gathered}
|\mathbf{v}(t)|^{2}=\cos ^{2}(t)+\sin ^{2}(t)-2 \sin (t) \cos (t) \\
+\cos ^{2}(t)+\sin ^{2}(t)+2 \sin (t) \cos (t)+1 \\
|\mathbf{v}(t)|=\sqrt{3}, \text { therefore } \ell(t)=\int_{0}^{t} \sqrt{3} d \tau \text { implies } \ell=\sqrt{3} t . \\
\hat{\mathbf{r}}(\ell)=\left\langle\left[\sin \left(\frac{\ell}{\sqrt{3}}\right)+\cos \left(\frac{\ell}{\sqrt{3}}\right)-1\right],\left[-\cos \left(\frac{\ell}{\sqrt{3}}\right)+\sin \left(\frac{\ell}{\sqrt{3}}\right)+1\right], \frac{\ell}{\sqrt{3}}\right\rangle .
\end{gathered}
$$

Section 13.3

Example

Reparametrize the curve $\mathbf{r}(t)=\left\langle\frac{3}{2} \sin \left(t^{2}\right), 2 t^{2}, \frac{3}{2} \cos \left(t^{2}\right)\right\rangle$ with respect to its arc length measured from $t=1$ in the direction of increasing t.

Solution:

We first compute the arc length function. We start with the derivative

$$
\mathbf{r}^{\prime}(t)=\left\langle 3 t \cos \left(t^{2}\right), 4 t,-3 \sin \left(t^{2}\right)\right\rangle
$$

We now need its magnitude,

$$
\begin{gathered}
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9 t^{2} \cos ^{2}\left(t^{2}\right)+16 t^{2}+9 \sin ^{2}\left(t^{2}\right)} \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9 t^{2}+16 t^{2}}=(\sqrt{9+16}) t \quad \Rightarrow \quad\left|\mathbf{r}^{\prime}(t)\right|=5 t
\end{gathered}
$$

Section 13.3

Example

Reparametrize the curve $\mathbf{r}(t)=\left\langle\frac{3}{2} \sin \left(t^{2}\right), 2 t^{2}, \frac{3}{2} \cos \left(t^{2}\right)\right\rangle$ with respect to its arc length measured from $t=1$ in the direction of increasing t.

Solution: Recall: $\left|\mathbf{r}^{\prime}(t)\right|=5 t$. The arc length function is

$$
s(t)=\int_{1}^{t} 5 \tau d \tau=\frac{5}{2}\left(\left.\tau^{2}\right|_{1} ^{t}\right)=\frac{5}{2}\left(t^{2}-1\right)
$$

Inverting this function for t^{2}, we obtain $t^{2}=\frac{2}{5} s+1$.
The reparametrization of $\mathbf{r}(t)$ is given by

$$
\hat{\mathbf{r}}(s)=\left\langle\frac{3}{2} \sin \left(\frac{2}{5} s+1\right), 2\left(\frac{2}{5} s+1\right), \frac{3}{2} \cos \left(\frac{2}{5} s+1\right)\right\rangle .
$$

Section 14.2

Example

Find an equation for the level surface of $f(x, y, z)=z-x^{2}-y^{2}$ containing the point $P_{0}=(3,-1,1)$.

Solution: Any level surface is the set of points is space solution of

$$
z-x^{2}-y^{2}=k, \quad k \in \mathbb{R}
$$

To find k, we evaluate the equation above at P_{0},

$$
1-9-1=k \quad \Rightarrow \quad k=-9
$$

We conclude that $z-x^{2}-y^{2}=-9$.

Section 14.2

Example

Compute the limit $\lim _{(x, y) \rightarrow(4,3)} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$.
Solution: Remark: $f(x, y)=\frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$ is not defined at $(4,3)$.
Recall from Calculus I: Multiply by the conjugate.

$$
\begin{gathered}
f(x, y)=\left[\frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}\right]\left[\frac{\sqrt{x}+\sqrt{y+1}}{\sqrt{x}+\sqrt{y+1}}\right] \\
f(x, y)=\frac{[x-(y+1)]}{(x-y-1)[\sqrt{x}+\sqrt{y+1}]}=\frac{1}{\sqrt{x}+\sqrt{y+1}} .
\end{gathered}
$$

We conclude that, $\lim _{(x, y) \rightarrow(4,3)} f(x, y)=\frac{1}{4}$.

Section 14.2

Example
Compute the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x y}$.
Solution: Remark: $f(x, y)=\frac{x^{2}+y^{2}}{x y}$ is not defined at $(0,0)$.
Recall: It is often easier to prove that a limit does not exist.
The two paths theorem. Paths $x=0$ or $y=0$ are not useful.
First path, $y=x$. Then

$$
\lim _{x \rightarrow 0} f(x, x)=\lim _{x \rightarrow 0} \frac{x^{2}+x^{2}}{x^{2}}=\lim _{x \rightarrow 0} 2=2
$$

Second path, $y=2 x$. Then

$$
\lim _{x \rightarrow 0} f(x, 2 x)=\lim _{x \rightarrow 0} \frac{x^{2}+4 x^{2}}{x(2 x)}=\lim _{x \rightarrow 0} \frac{5}{2}=\frac{5}{2}
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ DNE.

Section 14.3

Example

Given a function z defined by the equation $x y+z^{3} x-2 y z=0$, find $\partial_{x} z$ in terms of x, y and z.

Solution: We use implicit differentiation:

$$
\begin{gather*}
y+z^{3}+3 z^{2} z_{X} x-2 y z_{x}=0 \\
z_{x}\left(3 x z^{2}-2 y\right)=-y-z^{3} \\
z_{x}=-\frac{\left(y+z^{3}\right)}{\left(3 x z^{2}-2 y\right)}
\end{gather*}
$$

Section 14.4

Example
Given $f(x, y)=e^{x y}$, and the coordinate transformation
$x=r \cos (\theta)$ and $y=r \sin (\theta)$, find \hat{f}_{r} and \hat{f}_{θ}, where
$\hat{f}(r, \theta)=f(x(r, \theta), y(r, \theta))$.
Solution: The chain rule implies

$$
\begin{gathered}
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}, \quad \hat{f}_{\theta}=f_{x} x_{\theta}+f_{y} y_{\theta} \\
\hat{f}_{r}=y e^{x y} x_{r}+x e^{x y} y_{r} \quad \Rightarrow \quad \hat{f}_{r} e^{x y}\left(y x_{r}+x y_{r}\right) \\
\hat{f}_{r}=e^{r^{2} \sin (\theta) \cos (\theta)}[r \sin (\theta) \cos (\theta)+r \cos (\theta) \sin (\theta)] \\
\hat{f}_{\theta}=y e^{x y} x_{\theta}+x e^{x y} y_{\theta} \quad \Rightarrow \quad \hat{f}_{\theta}=e^{x y}\left(y x_{\theta}+x y_{\theta}\right) \\
\hat{f}_{\theta}=e^{r^{2} \sin (\theta) \cos (\theta)}\left[-r^{2} \sin (\theta) \sin (\theta)+r^{2} \cos (\theta) \cos (\theta)\right] .
\end{gathered}
$$

Also: $\hat{f}_{r}=r \sin (2 \theta) e^{r^{2} \sin (2 \theta) / 2}$, and $\hat{f}_{\theta}=r^{2} \cos (2 \theta) e^{r^{2} \sin (2 \theta) / 2}$.

Section 14.5

Example

Find all directions \mathbf{u} such that $\left(D_{\mathbf{u}} f\right)(1,1)=0$, where $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
Solution: Recall: The $D_{\mathbf{u}} f=0$ iff $\mathbf{u} \perp \nabla f$. The gradient is

$$
\begin{gathered}
f_{x}=\frac{2 x\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{\left(x^{2}-y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{2}} \Rightarrow f_{x}=\frac{4 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} . \\
f_{y}=\frac{-2 y\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{\left(x^{2}-y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{2}} \Rightarrow f_{y}=\frac{-4 y x^{2}}{\left(x^{2}+y^{2}\right)^{2}} . \\
\nabla f=\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}\langle y,-x\rangle . \quad \Rightarrow \quad(\nabla f)(1,1)=\langle 1,-1\rangle .
\end{gathered}
$$

Section 14.5

Example

Find all directions \mathbf{u} such that $\left(D_{\mathbf{u}} f\right)(1,1)=0$, where
$f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
Solution: Recall: $(\nabla f)(1,1)=\langle 1,-1\rangle$.
We find all \mathbf{u}, unit, such that $\mathbf{u} \perp\langle 1,-1\rangle$.

$$
\left\langle u_{x}, u_{y}\right\rangle \cdot\langle 1,-1\rangle=0 \quad \Rightarrow \quad u_{x}=u_{y} .
$$

Since \mathbf{u} is unit, then

$$
u_{x}^{2}+u_{y}^{2}=1 \quad \Rightarrow \quad 2 u_{x}^{2}=1 \quad \Rightarrow \quad u_{x}= \pm \frac{1}{\sqrt{2}}
$$

We conclude: $\mathbf{u}= \pm \frac{1}{\sqrt{2}}\langle 1,1\rangle$.

Section 14.5

Example

Find the direction of most rapid increase of the function $f(x, y, z)=\ln \left(x^{3}+y^{3}-1\right)-y+3 z$ at the point $P_{0}=(1,1,4)$.

Solution: Recall: The direction of most rapid increase is the direction of the gradient vector at P_{0}.

$$
\nabla f=\frac{3 x^{2}}{x^{3}+y^{3}-1} \mathbf{i}+\left(\frac{3 y^{2}}{x^{3}+y^{3}-1}-1\right) \mathbf{j}+3 \mathbf{k} .
$$

The direction of maximum increase is

$$
(\nabla f)(1,1,4)=\langle 3,2,3\rangle
$$

Section 14.5

Example

(a) Find the direction in which $f(x, y)=x^{2} e^{3 y}$ decreases the most rapidly at $P_{0}=(-1,0)$, and also find the directional derivative of $f(x, y)$ at P_{0} along that direction.
(b) Find the directional derivative of $f(x, y)$ above at the point P_{0} in the direction given by $\mathbf{v}=\langle-1,1\rangle$.

Solution:

(a) The direction f decreases the most rapidly is given by $-\nabla f$,

$$
\nabla f(x, y)=\left\langle 2 x e^{3 y}, 3 x^{2} e^{3 y}\right\rangle \quad \Rightarrow \quad-\nabla f(-1,0)=\langle 2,-3\rangle .
$$

The value of the directional derivative along this direction is, $-|\nabla f(-1,0)|=-\sqrt{9+4}=-\sqrt{13}$.
(b) A unit vector along $\langle-1,1\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{2}}\langle-1,1\rangle$, then,

$$
D_{u} f(-1,0)=\nabla f(-1,0) \cdot \mathbf{u}=\langle-2,3\rangle \cdot \frac{1}{\sqrt{2}}\langle-1,1\rangle=\frac{5}{\sqrt{2}} .
$$

Section 14.6

Example

Find the linear approximation of $f(x, y)=x \cos (\pi y / 2)-y^{2} e^{x}$ at the point $(0,-1)$, and use it to approximate $f(0.1,-0.9)$.

Solution: $f(x, y)=x \cos (\pi y / 2)-y^{2} e^{x}, \quad f(0,-1)=-1$.

$$
\begin{gathered}
f_{x}(x, y)=\cos (\pi y / 2)-y^{2} e^{x}, \quad f_{x}(0,-1)=\cos (-\pi / 2)-1=-1 \\
f_{y}(x, y)=-x \sin (\pi y / 2) \frac{\pi}{2}-2 y e^{x} \quad f_{y}(0,-1)=2
\end{gathered}
$$

Then, the linear approximation $L(x, y)$ is given by

$$
L(x, y)=-(x-0)+2(y+1)-1, \quad \Rightarrow \quad L(x, y)=-x+2 y+1
$$

The linear approximation of $f(0.1,-0.9)$ is $L(0.1,-0.9)$, $L(0.1,-0.9)=-0.1+2(0.1)-1=0.1-1=-0.9$.

Section 14.6

Example

(a) Find the linear approximation $L(x, y)$ of the function $f(x, y)=\sin (2 x+3 y)+1$ at the point $(-3,2)$.
(b) Use the approximation above to estimate the value of $f(-2.9,2.1)$.

Solution:
(a) $L(x, y)=f_{x}(-3,2)(x+3)+f_{y}(-3,2)(y-2)+f(-3,2)$.

Since $f_{x}(x, y)=2 \cos (2 x+3 y)$ and $f_{y}(x, y)=3 \cos (2 x+3 y)$,
$f_{x}(-3,2)=2 \cos (-6+6)=2, \quad f_{y}(-3,2)=3 \cos (-6+6)=3$,

$$
f(-3,2)=\sin (-6+6)+1=1
$$

the linear approximation is $L(x, y)=2(x+3)+3(y-2)+1$.

Section 14.6

Example

(a) Find the linear approximation $L(x, y)$ of the function

$$
f(x, y)=\sin (2 x+3 y)+1 \text { at the point }(-3,2) .
$$

(b) Use the approximation above to estimate the value of $f(-2.9,2.1)$.

Solution: Recall: $L(x, y)=2(x+3)+3(y-2)+1$.
(b) We use L to find the a linear approximation to $f(-2.9,2.1)$. We need to compute $L(-2.9,2.1)$.

$$
\begin{gathered}
L(-2.9,2.1)=2(-2.9+3)+3(2.1-2)+2 \\
L(-2.9,2.1)=2(0.1)+3(0.1)+1 \quad \Rightarrow \quad L(-2.9,2.1)=1.5 .
\end{gathered}
$$

Exact value is close to 1.479 .

Section 14.7

Example

(a) Find all the critical points of $f(x, y)=12 x y-2 x^{3}-3 y^{2}$.
(b) For each critical point of f, determine whether f has a local maximum, local minimum, or saddle point at that point.

Solution:
(a) $\nabla f(x, y)=\left\langle 12 y-6 x^{2}, 12 x-6 y\right\rangle=\langle 0,0\rangle$, then,

$$
x^{2}=2 y, \quad y=2 x, \quad \Rightarrow \quad x(x-4)=0
$$

There are two solutions, $x=0 \Rightarrow y=0$, and $x=4 \Rightarrow y=8$.
That is, there are two critical points, $(0,0)$ and $(4,8)$.

Section 14.7

Example

(a) Find all the critical points of $f(x, y)=12 x y-2 x^{3}-3 y^{2}$.
(b) For each critical point of f, determine whether f has a local maximum, local minimum, or saddle point at that point.

Solution:

(b) Recalling $\nabla f(x, y)=\left\langle 12 y-6 x^{2}, 12 x-6 y\right\rangle$, we compute

$$
\begin{gathered}
f_{x x}=-12 x, \quad f_{y y}=-6, \quad f_{x y}=12 \\
D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=144\left(\frac{x}{2}-1\right),
\end{gathered}
$$

Since $D(0,0)=-144<0$, the point $(0,0)$ is a saddle point of f.
Since $D(4,8)=144(2-1)>0$, and $f_{x x}(4,8)=(-12) 4<0$, the point $(4,8)$ is a local maximum of f.

Section 14.7

Example

Find the absolute maximum and absolute minimum of
$f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}$ in the closed triangular region with vertices given by $(0,0),(1,0)$, and (0,2).

Solution:

We start finding the critical points inside the triangular region.

$$
\nabla f(x, y)=\left\langle y-2, x-\frac{1}{2} y\right\rangle=\langle 0,0\rangle, \quad \Rightarrow \quad y=2, \quad y=2 x
$$

The solution is $(1,2)$. This point is outside in the triangular region given by the problem, so there is no critical point inside the region.

Section 14.7

Example

Find the absolute maximum and absolute minimum of $f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}$ in the closed triangular region with vertices given by $(0,0),(1,0)$, and (0,2).

Solution:

We now find the candidates for absolute maximum and minimum on the borders of the triangular region. We first record the boundary vertices:

$$
\begin{aligned}
& (0,0) \quad \Rightarrow \quad f(0,0)=2 \\
& (1,0) \quad \Rightarrow \quad f(1,0)=0 \\
& (0,2) \quad \Rightarrow \quad f(0,2)=1
\end{aligned}
$$

Section 14.7

Example

Find the absolute maximum and absolute minimum of
$f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}$ in the closed triangular region with vertices given by $(0,0),(1,0)$, and (0,2).

Solution:

- The horizontal side of the triangle, $y=0, x \in(0,1)$. Since

$$
g(x)=f(x, 0)=2-2 x, \quad \Rightarrow \quad g^{\prime}(x)=-2 \neq 0
$$

there are no candidates in this part of the boundary.

- The vertical side of the triangle is $x=0, y \in(0,2)$. Then,

$$
g(y)=f(0, y)=2-\frac{1}{4} y^{2}, \quad \Rightarrow \quad g^{\prime}(y)=-\frac{1}{2} y=0
$$

so $y=0$ and we recover the point $(0,0)$.

Section 14.7

Example

Find the absolute maximum and absolute minimum of
$f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}$ in the closed triangular region with vertices given by $(0,0),(1,0)$, and (0,2).

Solution:

- The hypotenuse of the triangle $y=2-2 x, x \in(0,1)$. Then,

$$
\begin{aligned}
g(x)=f(x, 2-2 x) & =2+x(2-2 x)-2 x-\frac{1}{4}(2-2 x)^{2} \\
& =2+2 x-2 x^{2}-2 x-\left(x^{2}-2 x+1\right) \\
& =1+2 x-3 x^{2}
\end{aligned}
$$

Then, $g^{\prime}(x)=2-6 x=0$ implies $x=\frac{1}{3}$, hence $y=\frac{4}{3}$. The candidate is $\left(\frac{1}{3}, \frac{4}{3}\right)$.

Section 14.7

Example

Find the absolute maximum and absolute minimum of
$f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}$ in the closed triangular region with vertices given by $(0,0),(1,0)$, and $(0,2)$.
Solution:

- Recall that we have obtained a candidate point $\left(\frac{1}{3}, \frac{4}{3}\right)$. We evaluate f at this point,

$$
f\left(\frac{1}{3}, \frac{4}{3}\right)=2+\frac{4}{9}-\frac{2}{3}-\frac{1}{4} \frac{16}{9}=\frac{4}{3} .
$$

Recalling that $f(0,0)=2, f(1,0)=0$, and $f(0,2)=1$, the absolute maximum is at $(0,0)$, and the minimum is at $(1,0) . \quad \triangleleft$

