Review for MTH 234 Exam 1.

- Sections 12.1-12.6.
- 50 minutes.
- Problems similar to homework problems.
- No calculators, no notes, no books, no phones.

Section 12.1

Example

Find the equation and describe the region given by the intersection of the radius 5 sphere centered at the origin and the horizontal plane containing the point $P=(1,1,3)$.

Solution: The equation of the sphere, $x^{2}+y^{2}+z^{2}=25$.
Horizontal plane, $z=z_{0}$. Contains $P=(1,1,3)$, that is, $z=3$.
The intersection is:

$$
x^{2}+y^{2}+3^{2}=25 \quad \Rightarrow \quad x^{2}+y^{2}=25-9=16=4^{2} .
$$

This is a circle radius $r=4$ centered at $x=0, y=0, z=3$, contained in the horizontal plane $z=3$.

Section 12.3

Example

Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
(a) Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution: Recall: $\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}$.

$$
\mathbf{v} \cdot \mathbf{w}=\langle 2,-2,1\rangle \cdot\langle 1,2,-1\rangle=2-4-1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w}=-3 .
$$

(b) Find the cosine of the angle between \mathbf{v} and \mathbf{w}.

Solution: Recall: $\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos (\theta)$.

$$
\begin{align*}
& |\mathbf{v}|=\sqrt{4+4+1}=3, \quad|\mathbf{w}|=\sqrt{1+4+1}=\sqrt{6} \\
& \cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}=\frac{-3}{3 \sqrt{6}} \quad \Rightarrow \quad \cos (\theta)=-\frac{1}{\sqrt{6}}
\end{align*}
$$

Section 12.3

Example

(a) Find a unit vector opposite to $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution: The vector is $\mathbf{u}=-\frac{\mathbf{v}}{|\mathbf{v}|}$. Since,

$$
|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6}, \quad \Rightarrow \quad \mathbf{u}=-\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
$$

(b) Find $|\mathbf{u}-2 \mathbf{v}|$, where $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$, and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution: First find $\mathbf{u}-2 \mathbf{v}$, then find $|\mathbf{u}-2 \mathbf{v}|$.

$$
\begin{gather*}
\mathbf{u}-2 \mathbf{v}=\langle 3,2,1\rangle-2\langle 1,-2,1\rangle=\langle 1,6,-1\rangle \\
|\mathbf{u}-2 \mathbf{v}|=\sqrt{1+36+1} \quad \Rightarrow \quad|\mathbf{u}-2 \mathbf{v}|=\sqrt{38}
\end{gather*}
$$

Section 12.3

Example

Find the vector projection of vector $\mathbf{v}=-\mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$ onto vector $\mathbf{u}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
Solution: Recall: $\mathbf{P}_{u}(\mathbf{v})=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|}\right) \frac{\mathbf{u}}{|\mathbf{u}|}$.

$$
\mathbf{u} \cdot \mathbf{v}=\langle-1,3,-3\rangle \cdot\langle 1,-1,2\rangle=-1-3-6 \quad \Rightarrow \quad \mathbf{u} \cdot \mathbf{v}=-10
$$

Since $|\mathbf{u}|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{6}$, we obtain that

$$
\mathbf{P}_{u}(\mathbf{v})=\left(\frac{-10}{\sqrt{6}}\right) \frac{1}{\sqrt{6}}\langle 1,-1,2\rangle
$$

We conclude that $\mathbf{P}_{u}(\mathbf{v})=-\frac{5}{3}\langle 1,-1,2\rangle$.

Section 12.4

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.

Solution: A solution is a vector proportional to $\mathbf{v} \times \mathbf{w}$.
$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1\end{array}\right|=(2+6) \mathbf{i}-(6-6) \mathbf{j}+(12+4) \mathbf{k}=\langle 8,0,16\rangle$.
Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle$.

$$
\mathbf{u}=\frac{\langle 1,0,2\rangle}{|\langle 1,0,2\rangle|} \quad \Rightarrow \quad \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,0,2\rangle
$$

Section 12.4

Example

Find the area of the parallelogram formed by $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$, given in the example above.

Solution:

Recall: The area of the parallelogram formed by the vectors \mathbf{v} and \mathbf{w} is $A=|\mathbf{v} \times \mathbf{w}|$.

Since $\mathbf{v} \times \mathbf{w}=\langle 8,0,16\rangle$, then

$$
A=|\mathbf{v} \times \mathbf{w}|=\sqrt{8^{2}+16^{2}}=\sqrt{8^{2}+8^{2} 2^{2}}=\sqrt{8^{2}(1+4)}
$$

We conclude that

$$
A=8 \sqrt{5} .
$$

Triple product (Only if covered by your instructor.)

Example

Find the volume of the parallelepiped determined by the vectors
$\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.
Solution: We need to compute the triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.
We must start with the cross product.

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
4 & -2 & 5
\end{array}\right|=\langle(5+4),-(0-8),(0-4)\rangle .
$$

We obtain $\mathbf{v} \times \mathbf{w}=\langle 9,8,-4\rangle$. The triple product is

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\langle 6,3,-1\rangle \cdot\langle 9,8,-4\rangle=54+24+4=82
$$

Since $V=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$, we obtain $V=82$.

Section 12.5

Example

Does the line given by $\mathbf{r}(t)=\langle 0,1,1\rangle+\langle 1,2,3\rangle t$ intersects the plane $2 x+y-z=1$? If "yes", then find the intersection point.
Solution: First, find the parametric equation of the line,

$$
x(t)=t, \quad y(t)=1+2 t, \quad z(t)=1+3 t
$$

Then replace $x(t), y(t)$, and $z(t)$ above in the equation of the plane $2 x+y-z=1$.
If there is a solution for t, then there is an intersection between the line and the plane. Let us find that out,

$$
2 t+(1+2 t)-(1+3 t)=1 \quad \Rightarrow \quad t=1
$$

So, the intersection of the line and the plane is the point with coordinates $x=1, y=3, z=4$, that is, $P=(1,3,4)$.

Section 12.5

Example

Does the line given by $\mathbf{r}(t)=\langle 0,1,1\rangle+\langle 1,2,3\rangle t$ intersects the plane $7 x-2 y-z=1$? If "yes", then find the intersection point.
Solution: First, find the parametric equation of the line,

$$
x(t)=t, \quad y(t)=1+2 t, \quad z(t)=1+3 t .
$$

Then replace $x(t), y(t)$, and $z(t)$ above in the equation of the plane $7 x-2 y-z=1$. In this case we get

$$
7 t-2(1+2 t)-(1+3 t)=1 \quad \Rightarrow \quad-3=1, \quad \text { No solution. }
$$

So, there is no intersection between the line and the plane.
Notice: The line is parallel and not contained in the plane.

$$
\langle 1,2,3\rangle \cdot\langle 7,-2,-3\rangle=0, \quad \text { and } \quad P=(0,1,1) \notin \text { The Plane. }
$$

Section 12.5

Example

Find the equation for the plane that contains the point $P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Solution:

The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+t\langle 1,1,2\rangle$.
A vector tangent to the line, and so to the plane, is $\mathbf{v}=\langle 1,1,2\rangle$.

The point $P_{0}=(1,2,3)$ is in the plane. The line is in the plane, hence $P_{1}=(-2,0,-1)$ is in the plane.
Then a second vector tangent to the plane is $\overrightarrow{P_{1} P_{0}}=\langle 3,2,4\rangle$.

Section 12.5

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Solution:

Recall: $\mathbf{v}=\langle 1,1,2\rangle, \overrightarrow{P_{1} P_{0}}=\langle 3,2,4\rangle$.
The normal to the plane is
$\mathbf{n}=\mathbf{v} \times \overrightarrow{P_{1} P_{0}}$.

$\mathbf{n}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 3 & 2 & 4\end{array}\right|=\langle(4-4),-(4-6),(2-3)\rangle \quad \Rightarrow \quad \mathbf{n}=\langle 0,2,-1\rangle$.
The plane normal to $\langle 0,2,-1\rangle$ containing $P_{0}=(1,2,3)$ is given by

$$
0(x-1)+2(y-2)-(z-3)=0 \quad \Rightarrow \quad 2 y-z=1
$$

Section 12.5

Example

Find the equation of the plane that containing the points
$P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$.
Solution: Find two vectors tangent to the plane: $\overrightarrow{P Q}, \overrightarrow{P R}$.

$$
\overrightarrow{P Q}=\langle 0,-2,0\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle .
$$

The normal vector to the plane is $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$.

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 0 \\
-1 & -1 & 1
\end{array}\right|=(-2-0) \mathbf{i}-(0-0) \mathbf{j}+(0-2) \mathbf{k},
$$

that is, $\mathbf{n}=\langle-2,0,-2\rangle$. A point in the plane is $R=(0,0,2)$.
The equation of the plane is

$$
-2(x-0)+0(y-0)-2(z-2)=0 \quad \Rightarrow \quad x+z=2
$$

Section 12.5

Example

Find the equation of the plane parallel to $x-2 y+3 z=1$ and containing the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Solution: Recall: Planes are parallel iff their normal are parallel.
We choose the normal vector $\mathbf{n}=\langle 1,-2,3\rangle$.
We need to find the center of the sphere. We complete squares:
$0=x^{2}+2 x+y^{2}+z^{2}-2 z=\left(x^{2}+2 x+1\right)-1+y^{2}+\left(z^{2}-2 z+1\right)-1$
$0=(x+1)^{2}+y^{2}+(z-1)^{2}-2 \quad \Rightarrow \quad(x+1)^{2}+y^{2}+(z-1)^{2}=2$.
Therefore, the center of the sphere is at $P_{0}=(-1,0,1)$.
The equation of the plane is

$$
(x+1)-2(y-0)+3(z-1)=0 \quad \Rightarrow \quad x-2 y+3 z=2
$$

Section 12.5

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between planes is the angle between their normal vectors. The normal vectors are

$$
\mathbf{n}=\langle 2,-3,2\rangle, \quad \mathbf{N}=\langle 1,2,2\rangle .
$$

Use the dot dot product to find the cosine of the angle θ between these vectors;

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}
$$

But $\mathbf{n} \cdot \mathbf{N}=2-6+4=0$, we conclude that $\mathbf{n} \perp \mathbf{N}$.
The planes are perpendicular, the angle is $\theta=\pi / 2$.

Section 12.5

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: First, find a vector \mathbf{v} tangent to both planes. Then, find a point in the intersection.
Since vector \mathbf{v} must belong to both planes, $\mathbf{v} \perp \mathbf{n}=\langle 2,-3,2\rangle$ and $\mathbf{v} \perp \mathbf{N}=\langle 1,2,2\rangle$. We choose

$$
\mathbf{v}=\mathbf{n} \times \mathbf{N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -3 & 2 \\
1 & 2 & 2
\end{array}\right|=\langle(-6-4),-(4-2),(4+3)\rangle .
$$

So, $\mathbf{v}=\langle-10,-2,7\rangle$.

Section 12.5

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now find a point in the intersection of the planes.
From the first plane we compute z as follows: $2 z=1-2 x+3 y$. Introduce this equation for $2 z$ into the second plane:

$$
x+2 y+(1-2 x+3 y)=5 \quad \Rightarrow \quad-x+5 y=4
$$

We need just one solution. Choose: $y=0$, then $x=-4$, and this implies $z=9 / 2$. A point in the intersection of the planes is $P_{0}=(-4,0,9 / 2)$. The vector equation of the line is:

$$
\mathbf{r}(t)=\langle-4,-0,9 / 2\rangle+t\langle-10,-2,7\rangle .
$$

Section 12.6

Example

Sketch the surface $36 x^{2}+4 y^{2}+9 z^{2}=36$.
Solution: We first rewrite the equation above in the standard form

$$
x^{2}+\frac{4}{36} y^{2}+\frac{9}{36} z^{2}=1 \quad \Leftrightarrow \quad x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1
$$

This is the equation of an ellipsoid with principal radius of length 1,3 , and 2 on the x, y and z axis, respectively. Therefore

