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The divergence of a vector field in space

Definition
The divergence of a vector field F = 〈Fx ,Fy ,Fz〉 is the scalar field

divF = ∂xFx + ∂yFy + ∂zFz .

Remarks:

I It is also used the notation divF = ∇ · F.

I The divergence of a vector field measures the expansion
(positive divergence) or contraction (negative divergence) of
the vector field.

I A heated gas expands, so the divergence of its velocity field is
positive.

I A cooled gas contracts, so the divergence of its velocity field
is negative.



The divergence of a vector field in space

Example

Find the divergence and the curl of F = 〈2xyz ,−xy ,−z2〉.

Solution: Recall: divF = ∂xFx + ∂yFy + ∂zFz .

∂xFx = 2yz , ∂yFy = −x , ∂zFz = −2z .

Therefore ∇ · F = 2yz − x − 2z , that is ∇ · F = 2z(y − 1)− x .

Recall: curlF = ∇× F.

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

2xyz −xy −z2

∣∣∣∣∣∣ = 〈(0− 0),−(0− 2xy), (−y − 2xz)〉

We conclude: ∇× F = 〈0, 2xy ,−(2xz + y)〉. C

The divergence of a vector field in space
Example

Find the divergence of F =
r

ρ3
, where r = 〈x , y , z〉, and

ρ = |r| =
√

x2 + y2 + z2. (Notice: |F| = 1/ρ2.)

Solution: The field components are Fx =
x

ρ3
, Fy =

y

ρ3
, Fz =

z

ρ3
.

∂xFx = ∂x

[
x
(
x2 + y2 + z2

)−3/2]
∂xFx =

(
x2 + y2 + z2

)−3/2 − 3

2
x
(
x2 + y2 + z2

)−5/2
(2x)

∂xFx =
1

ρ3
− 3

x2

ρ5
⇒ ∂yFy =

1

ρ3
− 3

y2

ρ5
, ∂zFz =

1

ρ3
− 3

z2

ρ5
.

∇ · F =
3

ρ3
− 3

(x2 + y2 + z2)

ρ5
=

3

ρ3
− 3

ρ2

ρ5
=

3

ρ3
− 3

ρ3
.

We conclude: ∇ · F = 0. C
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The Divergence Theorem in space

Theorem
The flux of a differentiable vector field F : R3 → R3 across a
closed oriented surface S ⊂ R3 in the direction of the surface
outward unit normal vector n satisfies the equation∫∫

S

F · n dσ =

∫∫∫
V

(∇ · F) dV ,

where V ⊂ R3 is the region enclosed by the surface S.

Remarks:

I The volume integral of the divergence of a field F in a volume
V in space equals the outward flux (normal flow) of F across
the boundary S of V .

I The expansion part of the field F in V minus the contraction
part of the field F in V equals the net normal flow of F across
S out of the region V .



The Divergence Theorem in space

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution: Recall:

∫∫
S

F · n dσ =

∫∫∫
V

(∇ · F) dV .

We start with the flux integral across S . The surface S is the level
surface f = 0 of the function f (x , y , z) = x2 + y2 + z2 − R2. Its
outward unit normal vector n is

n =
∇f

|∇f |
, ∇f = 〈2x , 2y , 2z〉, |∇f | = 2

√
x2 + y2 + z2 = 2R,

We conclude that n =
1

R
〈x , y , z〉, where z = z(x , y).

Since dσ =
|∇f |
|∇f · k|

dx dy , then dσ =
R

z
dx dy , with z = z(x , y).

The Divergence Theorem in space

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution: Recall: n =
1

R
〈x , y , z〉, dσ =

R

z
dx dy , with z = z(x , y).∫∫

S

F · n dσ =

∫∫
S

(
〈x , y , z〉 · 1

R
〈x , y , z〉

)
dσ.∫∫

S

F · n dσ =
1

R

∫∫
S

(
x2 + y2 + z2

)
dσ = R

∫∫
S

dσ.

The integral on the sphere S can be written as the sum of the
integral on the upper half plus the integral on the lower half, both
integrated on the disk R = {x2 + y2 6 R2, z = 0}, that is,∫∫

S

F · n dσ = 2R

∫∫
R

R

z
dx dy .



The Divergence Theorem in space
Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution:

∫∫
S

F · n dσ = 2R

∫∫
R

R

z
dx dy .

Using polar coordinates on {z = 0}, we get∫∫
S

F · n dσ = 2

∫ 2π

0

∫ R

0

R2

√
R2 − r2

r dr dθ.

The substitution u = R2 − r2 implies du = −2r dr , so,∫∫
S

F · n dσ = 4πR2

∫ 0

R2

u−1/2 (−du)

2
= 2πR2

∫ R2

0
u−1/2du

∫∫
S

F · n dσ = 2πR2
(
2u1/2

∣∣∣R2

0

)
⇒

∫∫
S

F · n dσ = 4πR3.

The Divergence Theorem in space

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution:

∫∫
S

F · n dσ = 4πR3.

We now compute the volume integral

∫∫∫
V

∇ · F dV . The

divergence of F is ∇ · F = 1 + 1 + 1, that is, ∇ · F = 3. Therefore∫∫∫
V

∇ · F dV = 3

∫∫∫
V

dV = 3
(4

3
πR3

)
We obtain

∫∫∫
V

∇ · F dV = 4πR3.

We have verified the Divergence Theorem in this case. C



The Divergence Theorem in space

Example

Find the flux of the field F =
r

ρ3
across the boundary of the region

between the spheres of radius R1 > R0 > 0, where r = 〈x , y , z〉,
and ρ = |r| =

√
x2 + y2 + z2.

Solution: We use the Divergence Theorem∫∫
S

F · n dσ =

∫∫∫
V

(∇ · F) dV .

Since ∇ · F = 0, then

∫∫∫
V

(∇ · F) dV = 0. Therefore∫∫
S

F · n dσ = 0.

The flux along any surface S vanishes as long as 0 is not included
in the region surrounded by S . (F is not differentiable at 0.) C
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The meaning of Curls and Divergences

Remarks: The meaning of the Curl and the Divergence of a vector
field F is best given through the Stokes and Divergence Theorems.

I ∇× F = lim
S→{P}

1

A(S)

∮
C

F · dr,

where S is a surface containing the point P with boundary
given by the loop C and A(S) is the area of that surface.

I ∇ · F = lim
R→{P}

1

V (R)

∫∫
S

F · ndσ,

where R is a region in space containing the point P with
boundary given by the closed orientable surface S and V (R) is
the volume of that region.
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Applications in electromagnetism: Gauss’ Law

Gauss’ law: Let q : R3 → R be the charge density in space, and
E : R3 → R3 be the electric field generated by that charge. Then∫∫∫

R

q dV = k

∫∫
S

E · n dσ,

that is, the total charge in a region R in space with closed
orientable surface S is proportional to the integral of the electric
field E on this surface S .

The Divergence Theorem relates surface integrals with volume

integrals, that is,

∫∫
S

E · n dσ =

∫∫∫
R

(∇ · E) dV .

Using the Divergence Theorem we obtain the differential form of
Gauss’ law,

∇ · E =
1

k
q.

Applications in electromagnetism: Faraday’s Law

Faraday’s law: Let B : R3 → R3 be the magnetic field across an
orientable surface S with boundary given by the loop C , and let
E : R3 → R3 measured on that loop. Then

d

dt

∫∫
S

B · n dσ = −
∮

C

E · dr,

that is, the time variation of the magnetic flux across S is the
negative of the electromotive force on the loop.

The Stokes Theorem relates line integrals with surface integrals,

that is,

∮
C

E · r =

∫∫∫
S

(∇× E) dσ.

Using the Divergence Theorem we obtain the differential form of
Gauss’ law,

∂tB = −∇× E.


