
Review for Exam 4

I Sections 16.1-16.7.

I 50 minutes.

I 5 to 10 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.
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The Stokes Theorem (16.7)

Example

Use Stokes’ Theorem to find the flux of ∇× F outward through
the surface S , where F = 〈−y , x , x2〉 and
S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: Recall:

∫∫
S

(∇× F) · n dσ =

∮
C

F · dr.

The surface S is the cylinder walls and its cover at z = h.
Therefore, the curve C is the circle x2 + y2 = a2 at z = 0.
That circle can be parametrized (counterclockwise) as
r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].∫∫

S

(∇× F) · n dσ =

∮
C

F · dr =

∫ 2π

0
F(t) · r′(t) dt,

where F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 and
r′(t) = 〈−a sin(t), a cos(t), 0〉.

The Stokes Theorem (16.7)

Example

Use Stokes’ Theorem to find the flux of ∇× F outward through
the surface S , where F = 〈−y , x , x2〉 and
S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 and
r′(t) = 〈−a sin(t), a cos(t), 0〉. Hence∫∫

S

(∇× F) · n dσ =

∫ 2π

0
F(t) · r′(t) dt,

∫∫
S

(∇× F) · n dσ =

∫ 2π

0

(
a2 sin2(t) + a2 cos2(t)

)
dt =

∫ 2π

0
a2 dt.

We conclude that

∫∫
S

(∇× F) · n dσ = 2πa2.
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Surface integrals (16.6): Scalar fields
Example

Integrate the function g(x , y , z) = x(16− 4z)/y over the surface
cut from the parabolic cylinder z = 4− y2/4 by the planes x = 0,
x = 1 and z = 0.

Solution:

x
1

4

R

z

4

S

y

We must compute: I =

∫∫
S

g dσ.

Recall dσ =
|∇f |

|∇f · k|
dx dy , with k ⊥ R

and in this case f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =
√

16 + 4y2 = 2
√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.
Then, ∫∫

S

g dσ =

∫∫
R

x

y

[
16− 4z(x , y)

] 2
√

4 + y2

4
dx dy .



Surface integrals (16.6)

Example

Integrate the function g(x , y , z) = x(16− 4z)/y over the surface
cut from the parabolic cylinder z = 4− y2/4 by the planes x = 0,
x = 1 and z = 0.

Solution: I =

∫∫
S

g dσ =

∫∫
R

x

y

[
16− 4z(x , y)

] 2
√

4 + y2

4
dx dy .

1

2

∫∫
R

x

y

(
16− 16 + y2)

√
4 + y2 dx dy =

1

2

∫∫
R

xy
√

4 + y2 dx dy

I =
1

2

[∫ 4

−4
y
√

4 + y2 dy
][∫ 1

0
x dx

]
The first factor vanishes: An even function times an odd function
is an odd function, which is integrated in [−a, a].

We conclude that

∫∫
S

g dσ = 0. C
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Surface area (16.5)

Example

Set up the integral for the area of the surface cut from the
parabolic cylinder z = 4− y2/4 by the planes x = 0, x = 1, z = 0.

Solution:

x
1

4

R

z

4

S

y

We must compute: A(S) =

∫∫
S

dσ.

Recall dσ =
|∇f |

|∇f · k|
dx dy , with k ⊥ R.

Recall: f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =
√

16 + 4y2 = 2
√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.
Then,

A(S) =

∫∫
R

2
√

4 + y2

4
dx dy ⇒ A(S) =

∫ 1

0

∫ 4

−4

2
√

4 + y2

4
dy dx .

C
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The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of
F = (x − y2) i + (x2 + y) j through the ellipse 9x2 + 4y2 = 36.

Solution: Recall:

∮
C

F · n ds =

∫∫
S

divF dx dy .

Recall: divF = ∂xFx + ∂yFy . Here is simpler to compute the
right-hand side than the left-hand side. divF = 1 + 1 = 2.
Green’s Theorem implies∮

C

F · n ds =

∫∫
R

(2) dx dy . = 2A(R).

Since R is the ellipse x2/4 + y2/9 = 1, its area is A(R) = (2)(3)π.
We conclude ∮

C

F · n ds = 12π. C
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Conservative fields, potential functions (16.3)

Example

Compute I =

∫ (1,−1,0)

(0,0,0)
2x cos(z) dx + z dy + (y − x2 sin(z)) dz .

Solution: The integral is specified by the path end points. That
suggests that the vector field is a gradient field.

F = 〈2x cos(z), z , [y − x2 sin(z)]〉 = ∇f = 〈∂x f , ∂y f , ∂z f 〉.

∂x f = 2x cos(z) ⇒ f = x2 cos(z) + g(y , z).

∂y f = z = ∂yg ⇒ g = yz + h(z) ⇒ f = x2 cos(z) + yz + h(z).

∂z f = y − x2 sin(z) = −x2 sin(z) + y + h′ ⇒ h′ = 0

Since f = x2 cos(z) + yz + c , we obtain

I =

∫ (1,−1,0)

(0,0,0)
∇f · dr = f (1,−1, 0)− f (0, 0, 0) ⇒ I = 1.C
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Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: The flow (also called circulation) of the field F along a
curve C parametrized by r(t) for t ∈ [t0, t1] is given by∫

C

F · dr =

∫ t1

t0

F(t) · r′(t) dt.

We use t = x as the parameter of the curve r, so we obtain

r(t) = 〈t, t2, t〉, t ∈ [0, 1] ⇒ r′(t) = 〈1, 2t, 1〉.

F(t) = 〈t(t2), (t2)2,−t2(t)〉 ⇒ F(t) = 〈t3, t4,−t3〉.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: r′(t) = 〈1, 2t, 1〉 for t ∈ [0, 1] and F(t) = 〈t3, t4,−t3〉.∫
C

F · dr =

∫ t1

t0

F(t) · r′(t) dt =

∫ 1

0
〈t3, t4,−t3〉 · 〈1, 2t, 1〉 dt,

∫
C

F · dr =

∫ 1

0

(
t3 + 2t5 − t3

)
dt =

∫ 1

0
2t5 dt =

2

6
t6

∣∣∣1
0
.

We conclude that

∫
C

F · dr =
1

3
. C
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Line integrals (16.1)

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: We have to compute I =

∫
C

f ds, by that we mean

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt,

where r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] is a parametrization of the
path C . In this case the path is given by the parabola y = x2/2, so
a simple parametrization is to use x = t, that is,

r(t) =
〈
t,

t2

2

〉
, t ∈ [0, 2] ⇒ r′(t) = 〈1, t〉.



Line integrals (16.1)

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: r(t) =
〈
t,

t2

2

〉
for t ∈ [0, 2], and r′(t) = 〈1, t〉.

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt =

∫ 2

0

t3

t2/2

√
1 + t2 dt,

∫
C

f ds =

∫ 2

0
2t

√
1 + t2 dt, u = 1 + t2, du = 2t dt.

∫
C

f ds =

∫ 5

1
u1/2 du =

2

3
u3/2

∣∣∣5
1

=
2

3

(
53/2 − 1

)
.

We conclude that

∫
C

f ds =
2

3

(
5
√

5− 1
)
. C


