Review for Exam 4

- Sections 16.1-16.6.
- 50 minutes.
- 5 to 10 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

Surface integrals (16.6): Scalar fields

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$ and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}}
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$.
Then,

$$
\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y
$$

Surface integrals (16.6)

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& \iint_{S} g d \sigma=\frac{1}{2} 2\left(4^{2}+\frac{4^{3}}{3}\right) \frac{1}{2}=8\left(1+\frac{4}{3}\right) \quad \Rightarrow \quad \iint_{S} g d \sigma=\frac{56}{3}
\end{aligned}
$$

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

Surface area (16.5)

Example

Set up the integral for the area of the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0, x=1, z=0$. Solution:

We must compute: $A(S)=\iint_{S} d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$.
Recall: $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}}
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$.
Then,

$$
A(S)=\iint_{R} \frac{2 \sqrt{4+y^{2}}}{4} d x d y \Rightarrow A(S)=\int_{0}^{1} \int_{-4}^{4} \frac{2 \sqrt{4+y^{2}}}{4} d y d x
$$

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of
$\mathbf{F}=\left(x-y^{2}\right) \mathbf{i}+\left(x^{2}+y\right) \mathbf{j}$ through the ellipse $9 x^{2}+4 y^{2}=36$.
Solution: Recall: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S} \operatorname{div} \mathbf{F} d x d y$.
Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}$. Here is simpler to compute the right-hand side than the left-hand side. $\operatorname{div} \mathbf{F}=1+1=2$.
Green's Theorem implies

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}(2) d x d y .=2 A(R) .
$$

Since R is the ellipse $x^{2} / 4+y^{2} / 9=1$, its area is $A(R)=(2)(3) \pi$.
We conclude

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=12 \pi .
$$

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

Conservative fields, potential functions (16.3)

Example
Compute $I=\int_{(0,0,0)}^{(1,-1,0)} 2 x \cos (z) d x+z d y+\left(y-x^{2} \sin (z)\right) d z$.
Solution: The integral is specified by the path end points. That suggests that the vector field is a gradient field.

$$
\begin{gathered}
\mathbf{F}=\left\langle 2 x \cos (z), z,\left[y-x^{2} \sin (z)\right]\right\rangle=\nabla f=\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle . \\
\partial_{x} f=2 x \cos (z) \Rightarrow f=x^{2} \cos (z)+g(y, z) . \\
\partial_{y} f=z=\partial_{y} g \Rightarrow g=y z+h(z) \Rightarrow f=x^{2} \cos (z)+y z+h(z) . \\
\partial_{z} f=y-x^{2} \sin (z)=-x^{2} \sin (z)+y+h^{\prime} \Rightarrow h^{\prime}=0
\end{gathered}
$$

Since $f=x^{2} \cos (z)+y z+c$, we obtain

$$
I=\int_{(0,0,0)}^{(1,-1,0)} \nabla f \cdot d \mathbf{r}=f(1,-1,0)-f(0,0,0) \quad \Rightarrow \quad I=1
$$

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\begin{gathered}
\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle \\
\mathbf{F}(t)=\left\langle t\left(t^{2}\right),\left(t^{2}\right)^{2},-t^{2}(t)\right\rangle \quad \Rightarrow \quad \mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t \\
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t=\int_{0}^{1} 2 t^{5} d t=\left.\frac{2}{6} t^{6}\right|_{0} ^{1}
\end{gathered}
$$

We conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\frac{1}{3}$.

Review for Exam 4

- (16.6) Surface integrals.
- (16.5) Surface area.
- (16.4) The Green Theorem in a plane.
- (16.3) Conservative fields, potential functions.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.1) Line integrals.

Line integrals (16.1)

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.
Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$, so a simple parametrization is to use $x=t$, that is,

$$
\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle, \quad t \in[0,2] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1, t\rangle
$$

Line integrals (16.1)

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
\int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=\frac{2}{3}\left(5^{3 / 2}-1\right)
\end{gathered}
$$

We conclude that $\int_{C} f d s=\frac{2}{3}(5 \sqrt{5}-1)$.

