- ► Sections 16.1-16.6.
- ▶ 50 minutes.
- ▶ 5 to 10 problems, similar to homework problems.
- ▶ No calculators, no notes, no books, no phones.
- ▶ No green book needed.

Review for Exam 4

- ► (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ▶ (16.1) Line integrals.

Surface integrals (16.6): Scalar fields

Example

Integrate the function $g(x, y, z) = x\sqrt{4 + y^2}$ over the surface cut from the parabolic cylinder $z = 4 - y^2/4$ by the planes x = 0, x = 1 and z = 0.

Solution:

We must compute:
$$I = \iint_{C} g \, d\sigma$$
.

Recall
$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} dx dy$$
, with $\mathbf{k} \perp R$

and in this case $f(x, y, z) = y^2 + 4z - 16$.

$$\nabla f = \langle 0, 2y, 4 \rangle \quad \Rightarrow \quad |\nabla f| = \sqrt{16 + 4y^2} = 2\sqrt{4 + y^2}.$$

Since $R = [0,1] \times [-4,4]$, its normal vector is **k** and $|\nabla f \cdot \mathbf{k}| = 4$. Then,

$$\iint_{S} g \, d\sigma = \iint_{R} \left(x\sqrt{4+y^2}\right) \frac{2\sqrt{4+y^2}}{4} \, dx \, dy.$$

Surface integrals (16.6)

Example

Integrate the function $g(x, y, z) = x\sqrt{4 + y^2}$ over the surface cut from the parabolic cylinder $z = 4 - y^2/4$ by the planes x = 0, x = 1 and z = 0.

Solution:
$$\iint_{S} g \, d\sigma = \iint_{R} \left(x \sqrt{4 + y^2} \right) \frac{2\sqrt{4 + y^2}}{4} \, dx \, dy.$$

$$\iint_{S} g \, d\sigma = \frac{1}{2} \iint_{R} x(4+y^{2}) \, dx \, dy = \frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x(4+y^{2}) \, dx \, dy$$

$$\iint_{S} g \, d\sigma = \frac{1}{2} \left[\int_{-4}^{4} (4+y^{2}) \, dy \right] \left[\int_{0}^{1} x \, dx \right] = \frac{1}{2} \left(4y + \frac{y^{3}}{3} \right) \Big|_{-4}^{4} \left(\frac{x^{2}}{2} \right) \Big|_{0}^{1}$$

$$\iint_{S} g \, d\sigma = \frac{1}{2} 2 \left(4^{2} + \frac{4^{3}}{3} \right) \frac{1}{2} = 8 \left(1 + \frac{4}{3} \right) \quad \Rightarrow \quad \iint_{S} g \, d\sigma = \frac{56}{3}.$$

- ▶ (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ▶ (16.1) Line integrals.

Surface area (16.5)

Example

Set up the integral for the area of the surface cut from the parabolic cylinder $z=4-y^2/4$ by the planes x=0, x=1, z=0.

Solution:

We must compute:
$$A(S) = \iint_S d\sigma$$
.

Recall
$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} dx dy$$
, with $\mathbf{k} \perp R$.

Recall:
$$f(x, y, z) = y^2 + 4z - 16$$
.

$$\nabla f = \langle 0, 2y, 4 \rangle \quad \Rightarrow \quad |\nabla f| = \sqrt{16 + 4y^2} = 2\sqrt{4 + y^2}.$$

Since $R = [0,1] \times [-4,4]$, its normal vector is **k** and $|\nabla f \cdot \mathbf{k}| = 4$. Then,

$$A(S) = \iint_{R} \frac{2\sqrt{4+y^2}}{4} \, dx \, dy \Rightarrow A(S) = \int_{0}^{1} \int_{-4}^{4} \frac{2\sqrt{4+y^2}}{4} \, dy \, dx.$$

- ► (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ▶ (16.1) Line integrals.

The Green Theorem in a plane (16.4)

Example

Use the Green Theorem in the plane to find the flux of $\mathbf{F} = (x - y^2)\mathbf{i} + (x^2 + y)\mathbf{j}$ through the ellipse $9x^2 + 4y^2 = 36$.

Solution: Recall:
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{\mathcal{S}} \operatorname{div} \mathbf{F} \, dx \, dy$$
.

Recall: $\operatorname{div} \mathbf{F} = \partial_x F_x + \partial_y F_y$. Here is simpler to compute the right-hand side than the left-hand side. $\operatorname{div} \mathbf{F} = 1 + 1 = 2$. Green's Theorem implies

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (2) \, dx \, dy. = 2 \, A(R).$$

Since R is the ellipse $x^2/4 + y^2/9 = 1$, its area is $A(R) = (2)(3)\pi$. We conclude

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = 12\pi.$$

- ► (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ▶ (16.1) Line integrals.

Conservative fields, potential functions (16.3)

Example Compute
$$I = \int_{(0,0,0)}^{(1,-1,0)} 2x \cos(z) dx + z dy + (y - x^2 \sin(z)) dz$$
.

Solution: The integral is specified by the path end points. That suggests that the vector field is a gradient field.

$$\mathbf{F} = \langle 2x\cos(z), z, [y - x^2\sin(z)] \rangle = \nabla f = \langle \partial_x f, \partial_y f, \partial_z f \rangle.$$

$$\partial_x f = 2x\cos(z) \quad \Rightarrow \quad f = x^2\cos(z) + g(y, z).$$

$$\partial_y f = z = \partial_y g \quad \Rightarrow \quad g = yz + h(z) \quad \Rightarrow \quad f = x^2\cos(z) + yz + h(z).$$

$$\partial_z f = y - x^2\sin(z) = -x^2\sin(z) + y + h' \quad \Rightarrow \quad h' = 0$$

Since
$$f = x^2 \cos(z) + yz + c$$
, we obtain

$$I = \int_{(0,0,0)}^{(1,-1,0)} \nabla f \cdot d\mathbf{r} = f(1,-1,0) - f(0,0,0) \quad \Rightarrow \quad I = 1.$$

- ► (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ▶ (16.1) Line integrals.

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F} = \langle xy, y^2, -yz \rangle$ from the point (0,0,0) to the point (1,1,1) along the curve of intersection of the cylinder $y=x^2$ with the plane z=x.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in [t_0, t_1]$ is given by

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt.$$

We use t = x as the parameter of the curve \mathbf{r} , so we obtain

$$\mathbf{r}(t) = \langle t, t^2, t \rangle, \quad t \in [0, 1] \quad \Rightarrow \quad \mathbf{r}'(t) = \langle 1, 2t, 1 \rangle.$$

$$\mathbf{F}(t) = \langle t(t^2), (t^2)^2, -t^2(t) \rangle \quad \Rightarrow \quad \mathbf{F}(t) = \langle t^3, t^4, -t^3 \rangle.$$

Vector fields, work, circulation, flux (plane) (16.2)

Example

Find the flow of the velocity field $\mathbf{F} = \langle xy, y^2, -yz \rangle$ from the point (0,0,0) to the point (1,1,1) along the curve of intersection of the cylinder $y=x^2$ with the plane z=x.

Solution:
$$\mathbf{r}'(t) = \langle 1, 2t, 1 \rangle$$
 for $t \in [0, 1]$ and $\mathbf{F}(t) = \langle t^3, t^4, -t^3 \rangle$.

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_{0}^{1} \langle t^3, t^4, -t^3 \rangle \cdot \langle 1, 2t, 1 \rangle dt,$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} (t^{3} + 2t^{5} - t^{3}) dt = \int_{0}^{1} 2t^{5} dt = \frac{2}{6} t^{6} \Big|_{0}^{1}.$$

 \triangleleft

We conclude that
$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{3}$$
.

Review for Exam 4

- ► (16.6) Surface integrals.
- ▶ (16.5) Surface area.
- ▶ (16.4) The Green Theorem in a plane.
- ▶ (16.3) Conservative fields, potential functions.
- ▶ (16.2) Vector fields, work, circulation, flux (plane).
- ► (16.1) Line integrals.

Line integrals (16.1)

Example

Integrate the function $f(x,y) = x^3/y$ along the plane curve C given by $y = x^2/2$ for $x \in [0,2]$, from the point (0,0) to (2,2).

Solution: We have to compute $I = \int_{C} f \, ds$, by that we mean

$$\int_{C} f ds = \int_{t_0}^{t_1} f(x(t), y(t)) |\mathbf{r}'(t)| dt,$$

where $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ is a parametrization of the path C. In this case the path is given by the parabola $y = x^2/2$, so a simple parametrization is to use x = t, that is,

$$\mathbf{r}(t) = \left\langle t, \frac{t^2}{2} \right\rangle, \quad t \in [0, 2] \quad \Rightarrow \quad \mathbf{r}'(t) = \langle 1, t \rangle.$$

Line integrals (16.1)

Example

Integrate the function $f(x,y) = x^3/y$ along the plane curve C given by $y = x^2/2$ for $x \in [0,2]$, from the point (0,0) to (2,2).

Solution:
$$\mathbf{r}(t) = \left\langle t, \frac{t^2}{2} \right\rangle$$
 for $t \in [0, 2]$, and $\mathbf{r}'(t) = \langle 1, t \rangle$.

$$\int_{C} f \, ds = \int_{t_0}^{t_1} f(x(t), y(t)) \, |\mathbf{r}'(t)| \, dt = \int_{0}^{2} \frac{t^3}{t^2/2} \, \sqrt{1 + t^2} \, dt,$$

$$\int_C f \, ds = \int_0^2 2t \, \sqrt{1 + t^2} \, dt, \quad u = 1 + t^2, \quad du = 2t \, dt.$$

$$\int_{C} f \, ds = \int_{1}^{5} u^{1/2} \, du = \frac{2}{3} u^{3/2} \Big|_{1}^{5} = \frac{2}{3} (5^{3/2} - 1).$$

We conclude that
$$\int_C f \, ds = \frac{2}{3} (5\sqrt{5} - 1)$$
.