The divergence of a vector field in space

Definition
The *divergence* of a vector field \(\mathbf{F} = \langle F_x, F_y, F_z \rangle \) is the scalar field

\[
\text{div} \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.
\]

Remarks:
- It is also used the notation \(\text{div} \mathbf{F} = \nabla \cdot \mathbf{F} \).
- The divergence of a vector field measures the expansion (positive divergence) or contraction (negative divergence) of the vector field.
- A heated gas expands, so the divergence of its velocity field is positive.
- A cooled gas contracts, so the divergence of its velocity field is negative.
The divergence of a vector field in space

Example
Find the divergence and the curl of \(\mathbf{F} = \langle 2xyz, -xy, -z^2 \rangle \).

Solution: Recall: \(\text{div } \mathbf{F} = \partial_x F_x + \partial_y F_y + \partial_z F_z \).

\[
\partial_x F_x = 2yz, \quad \partial_y F_y = -x, \quad \partial_z F_z = -2z.
\]

Therefore \(\nabla \cdot \mathbf{F} = 2yz - x - 2z \), that is \(\nabla \cdot \mathbf{F} = 2z(y - 1) - x \).

Recall: \(\text{curl } \mathbf{F} = \nabla \times \mathbf{F} \).

\[
\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ 2xyz & -xy & -z^2 \end{vmatrix} = \langle (0 - 0), -(0 - 2xy), (-y - 2xz) \rangle
\]

We conclude: \(\nabla \times \mathbf{F} = \langle 0, 2xy, -(2xz + y) \rangle \).

\[\triangle]\n
The divergence of a vector field in space

Example
Find the divergence of \(\mathbf{F} = \frac{\mathbf{r}}{\rho^3} \), where \(\mathbf{r} = \langle x, y, z \rangle \), and \(\rho = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} \). (Notice: \(|\mathbf{F}| = 1/\rho^2 \).)

Solution: The field components are \(F_x = \frac{x}{\rho^3} \), \(F_y = \frac{y}{\rho^3} \), \(F_z = \frac{z}{\rho^3} \).

\[
\partial_x F_x = \partial_x \left[x(x^2 + y^2 + z^2)^{-3/2} \right] = \frac{1}{\rho^3} - 3 \frac{x^2}{\rho^5} \Rightarrow \partial_y F_y = \frac{1}{\rho^3} - 3 \frac{y^2}{\rho^5}, \quad \partial_z F_z = \frac{1}{\rho^3} - 3 \frac{z^2}{\rho^5}.
\]

\[
\nabla \cdot \mathbf{F} = \frac{3}{\rho^3} - 3 \frac{(x^2 + y^2 + z^2)}{\rho^5} = \frac{3}{\rho^3} - 3 \frac{\rho^2}{\rho^5} = \frac{3}{\rho^3} - 3 \frac{3}{\rho^3}.
\]

We conclude: \(\nabla \cdot \mathbf{F} = 0 \). \[\triangle\]
The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.

The Divergence Theorem in space.

- The meaning of Curls and Divergences.

Applications in electromagnetism:
 - Gauss’ law. (Divergence Theorem.)
 - Faraday’s law. (Stokes Theorem.)

The Divergence Theorem in space

Theorem

The flux of a differentiable vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ across a closed oriented surface $S \subset \mathbb{R}^3$ in the direction of the surface outward unit normal vector \mathbf{n} satisfies the equation

$$\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_V (\nabla \cdot \mathbf{F}) \, dV,$$

where $V \subset \mathbb{R}^3$ is the region enclosed by the surface S.

Remarks:

- The volume integral of the divergence of a field \mathbf{F} in a volume V in space equals the outward flux (normal flow) of \mathbf{F} across the boundary S of V.

- The expansion part of the field \mathbf{F} in V minus the contraction part of the field \mathbf{F} in V equals the net normal flow of \mathbf{F} across S out of the region V.
Example
Verify the Divergence Theorem for the field \(F = \langle x, y, z \rangle \) over the sphere \(x^2 + y^2 + z^2 = R^2 \).

Solution: Recall: \(\iiint_S F \cdot n \, d\sigma = \iiint_V (\nabla \cdot F) \, dV \).

We start with the flux integral across \(S \). The surface \(S \) is the level surface \(f = 0 \) of the function \(f(x, y, z) = x^2 + y^2 + z^2 - R^2 \). Its outward unit normal vector \(n \) is

\[
 n = \frac{\nabla f}{|\nabla f|}, \quad \nabla f = \langle 2x, 2y, 2z \rangle, \quad |\nabla f| = 2\sqrt{x^2 + y^2 + z^2} = 2R,
\]

We conclude that \(n = \frac{1}{R} \langle x, y, z \rangle \), where \(z = z(x, y) \).

Since \(d\sigma = \frac{|\nabla f|}{|\nabla f \cdot k|} \, dx \, dy \), then \(d\sigma = \frac{R}{z} \, dx \, dy \), with \(z = z(x, y) \).

The integral on the sphere \(S \) can be written as the sum of the integral on the upper half plus the integral on the lower half, both integrated on the disk \(R = \{x^2 + y^2 \leq R^2, \ z = 0\} \), that is,

\[
 \iint_S F \cdot n \, d\sigma = 2R \iint_R \frac{R}{z} \, dx \, dy.
\]
The Divergence Theorem in space

Example
Verify the Divergence Theorem for the field \(\mathbf{F} = \langle x, y, z \rangle \) over the sphere \(x^2 + y^2 + z^2 = R^2 \).

Solution: \(\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 2R \iint_R \frac{R}{z} \, dx \, dy \).
Using polar coordinates on \(\{z = 0\} \), we get
\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 2 \int_0^{2\pi} \int_0^R \frac{R^2}{\sqrt{R^2 - r^2}} r \, dr \, d\theta.
\]
The substitution \(u = R^2 - r^2 \) implies \(du = -2r \, dr \), so,
\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 4\pi R^2 \int_0^{R^2} u^{-1/2} \left(\frac{-du}{2} \right) = 2\pi R^2 \int_0^{R^2} u^{-1/2} \, du
\]
\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 2\pi R^2 \left(2u^{1/2} \right) \bigg|_0^{R^2} \Rightarrow \iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 4\pi R^3.
\]

The Divergence Theorem in space

Example
Verify the Divergence Theorem for the field \(\mathbf{F} = \langle x, y, z \rangle \) over the sphere \(x^2 + y^2 + z^2 = R^2 \).

Solution: \(\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 4\pi R^3 \).

We now compute the volume integral \(\iiint_V \nabla \cdot \mathbf{F} \, dV \). The divergence of \(\mathbf{F} \) is \(\nabla \cdot \mathbf{F} = 1 + 1 + 1 \), that is, \(\nabla \cdot \mathbf{F} = 3 \). Therefore
\[
\iiint_V \nabla \cdot \mathbf{F} \, dV = 3 \iiint_V \, dV = 3 \left(\frac{4}{3} \pi R^3 \right)
\]
We obtain \(\iiint_V \nabla \cdot \mathbf{F} \, dV = 4\pi R^3 \).
We have verified the Divergence Theorem in this case. \(\triangleleft \)
The Divergence Theorem in space

Example
Find the flux of the field \(\mathbf{F} = \frac{\mathbf{r}}{\rho^3} \) across the boundary of the region between the spheres of radius \(R_1 > R_0 > 0 \), where \(\mathbf{r} = \langle x, y, z \rangle \), and \(\rho = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} \).

Solution: We use the Divergence Theorem

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_V (\nabla \cdot \mathbf{F}) \, dV.
\]

Since \(\nabla \cdot \mathbf{F} = 0 \), then \(\iiint_V (\nabla \cdot \mathbf{F}) \, dV = 0 \). Therefore

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = 0.
\]

The flux along any surface \(S \) vanishes as long as \(\mathbf{0} \) is not included in the region surrounded by \(S \). (\(\mathbf{F} \) is not differentiable at \(\mathbf{0} \).) △

The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.
- The Divergence Theorem in space.
- **The meaning of Curls and Divergences.**
- Applications in electromagnetism:
 - Gauss’ law. (Divergence Theorem.)
 - Faraday’s law. (Stokes Theorem.)
The meaning of Curls and Divergences

Remarks: The meaning of the Curl and the Divergence of a vector field \mathbf{F} is best given through the Stokes and Divergence Theorems.

$\nabla \times \mathbf{F} = \lim_{S \to \{P\}} \frac{1}{A(S)} \oint_C \mathbf{F} \cdot d\mathbf{r},$

where S is a surface containing the point P with boundary given by the loop C and $A(S)$ is the area of that surface.

$\nabla \cdot \mathbf{F} = \lim_{R \to \{P\}} \frac{1}{V(R)} \iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma,$

where R is a region in space containing the point P with boundary given by the closed orientable surface S and $V(R)$ is the volume of that region.

The Divergence Theorem. (Sect. 16.8)

The divergence of a vector field in space.

The Divergence Theorem in space.

The meaning of Curls and Divergences.

Applications in electromagnetism:

- Gauss’ law. (Divergence Theorem.)
- Faraday’s law. (Stokes Theorem.)
Applications in electromagnetism: Gauss’ Law

Gauss’ law: Let \(q : \mathbb{R}^3 \to \mathbb{R} \) be the charge density in space, and \(E : \mathbb{R}^3 \to \mathbb{R}^3 \) be the electric field generated by that charge. Then

\[
\iiint_R q \, dV = k \iint_S E \cdot n \, d\sigma,
\]

that is, the total charge in a region \(R \) in space with closed orientable surface \(S \) is proportional to the integral of the electric field \(E \) on this surface \(S \).

The Divergence Theorem relates surface integrals with volume integrals, that is,

\[
\iint_S E \cdot n \, d\sigma = \iiint_R (\nabla \cdot E) \, dV.
\]

Using the Divergence Theorem we obtain the differential form of Gauss’ law,

\[
\nabla \cdot E = \frac{1}{k} q.
\]

Applications in electromagnetism: Faraday’s Law

Faraday’s law: Let \(B : \mathbb{R}^3 \to \mathbb{R}^3 \) be the magnetic field across an orientable surface \(S \) with boundary given by the loop \(C \), and let \(E : \mathbb{R}^3 \to \mathbb{R}^3 \) measured on that loop. Then

\[
\frac{d}{dt} \iint_S B \cdot n \, d\sigma = -\oint_C E \cdot dr,
\]

that is, the time variation of the magnetic flux across \(S \) is the negative of the electromotive force on the loop.

The Stokes Theorem relates line integrals with surface integrals, that is,

\[
\oint_C E \cdot r = \iint_S (\nabla \times E) \, d\sigma.
\]

Using the Divergence Theorem we obtain the differential form of Gauss’ law,

\[
\partial_t B = -\nabla \times E.
\]