The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

The curl of a vector field in space

Definition

The curl of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ in \mathbb{R}^{3} is the vector field

$$
\operatorname{curl} \mathbf{F}=\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right) \mathbf{i}+\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right) \mathbf{j}+\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right) \mathbf{k} .
$$

Remark: Since the following formula holds,

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

then one also uses the notation

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}
$$

Remark: The curl of a vector field measures the rotational component of the vector field at every point of its domain.

In 3-dimensions a vector is needed to collect this information.

The curl of a vector field in space

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|= \\
\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}-\left(\partial_{x}\left(-y^{2}\right)-\partial_{z}(x z)\right) \mathbf{j}+\left(\partial_{x}(x y z)-\partial_{y}(x z)\right) \mathbf{k}, \\
=(-2 y-x y) \mathbf{i}-(0-x) \mathbf{j}+(y z-0) \mathbf{k},
\end{gathered}
$$

We conclude that

$$
\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle .
$$

The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

The curl of conservative fields

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.

Remark:

- This Theorem is usually written as $\nabla \times(\nabla f)=\mathbf{0}$.
- The converse is true only on simple connected sets.

That is, if a vector field \mathbf{F} satisfies $\nabla \times \mathbf{F}=\mathbf{0}$ on a simple connected domain D, then there exists a scalar field $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Proof of the Theorem:
$\nabla \times \mathbf{F}=\left\langle\left(\partial_{y} \partial_{z} f-\partial_{z} \partial_{y} f\right),-\left(\partial_{x} \partial_{z} f-\partial_{z} \partial_{x} f\right),\left(\partial_{x} \partial_{y} f-\partial_{y} \partial_{x} f\right)\right\rangle$

The curl of conservative fields

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$.
Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example

Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?
Solution: Notice that

$$
\begin{aligned}
& \nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
& =\left\langle\left(6 x y z^{2}-6 x y z^{2}\right),-\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right),\left(2 y z^{3}-2 y z^{3}\right)\right\rangle=\mathbf{0} .
\end{aligned}
$$

Since $\nabla \times \mathbf{F}=\mathbf{0}$ and \mathbb{R}^{3} is simple connected, then \mathbf{F} is conservative, that is, there exists f in \mathbb{R}^{3} such that $\mathbf{F}=\nabla f . \quad \triangleleft$

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

Stokes' Theorem in space

Theorem

The circulation of a differentiable vector field $\mathbf{F}: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ around the boundary C of the oriented surface $S \subset D$ satisfies the equation

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma,
$$

where $d \mathbf{r}$ points counterclockwise when the unit vector \mathbf{n} normal to S points in the direction to the viewer (right-hand rule).

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.
Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$.
If we choose the upward normal to S, we have to choose a counterclockwise parametrization for C.

So we choose, for $t \in[0,2 \pi]$,

$$
\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle
$$

and the right-hand rule normal \mathbf{n} to S $\mathbf{n}=\langle 0,0,1\rangle$.

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, with $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle, t \in[0,2 \pi]$ and $\mathbf{n}=\langle 0,0,1\rangle$.
The circulation integral is:

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{0}^{2 \pi}\left\langle\cos ^{2}(t), 2 \cos (t), 0\right\rangle \cdot\langle-\sin (t), 2 \cos (t), 0\rangle d t \\
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t
\end{gathered}
$$

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} 4 \cos ^{2}(t) d t=\int_{0}^{2 \pi} 2[1+\cos (2 t)] d t
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we conclude that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$.

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2} & 2 x & z^{2}
\end{array}\right| \quad \Rightarrow \quad \nabla \times \mathbf{F}=\langle 0,0,2\rangle
$$

S is the flat surface $\left\{x^{2}+\frac{y^{2}}{2^{2}} \leqslant 1, z=0\right\}$, so $d \sigma=d x d y$.

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.
The right-hand side above is twice the area of the ellipse. Since we know that an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ has area $\pi a b$, we obtain

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=4 \pi .
$$

This verifies Stokes' Theorem.

Stokes' Theorem in space

Remark: Stokes' Theorem implies that for any smooth field \mathbf{F} and any two surfaces S_{1}, S_{2} having the same boundary curve C holds,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{1} d \sigma_{1}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2} .
$$

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any
half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.
Solution: (The previous example was the case $a \rightarrow 0$.)

We must verify Stokes' Theorem on S_{2},

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2} .
$$

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of $\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1$.
$\mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle$,
$(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2}=2 \frac{2 z / a^{2}}{|\nabla \mathbb{F}|}$.
$d \sigma_{2}=\frac{|\nabla \mathbb{F}|}{|\nabla \mathbb{F} \cdot \mathbf{k}|}=\frac{|\nabla \mathbb{F}|}{2 z / a^{2}} \Rightarrow(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2$.

Stokes' Theorem in space

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2$.
Therefore,

$$
\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=\iint_{S_{1}} 2 d x d y=2(2 \pi)
$$

We conclude that $\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=4 \pi$, no matter what is the value of $a>0$.

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

Idea of the proof of Stokes' Theorem

Split the surface S into n surfaces S_{i}, for $i=1, \cdots, n$, as it is done in the figure for $n=9$.

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\sum_{i=1}^{n} \oint_{C_{i}} \mathbf{F} \cdot d \mathbf{r}_{i} \\
& \simeq \sum_{i=1}^{n} \oint_{\tilde{c}_{i}} \mathbf{F} \cdot d \tilde{\mathbf{r}}_{i} \quad\left(\tilde{C}_{i}\right. \text { the border of small rectangles) } \\
& =\sum_{i=1}^{n} \iint_{\tilde{R}_{i}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{i} d A \text { (Green's Theorem on a plane) } \\
& \simeq \iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
\end{aligned}
$$

