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The curl of a vector field in space

Definition
The curl of a vector field F = 〈F1,F2,F3〉 in R3 is the vector field

curlF = (∂2F3 − ∂3F2) i + (∂3F1 − ∂1F3) j + (∂1F2 − ∂2F1) k.

Remark: Since the following
formula holds,

curlF =

∣∣∣∣∣∣
i j k

∂1 ∂2 ∂3

F1 F2 F3

∣∣∣∣∣∣
then one also uses the notation

curlF = ∇× F.

Remark: The curl of a
vector field measures the
rotational component of
the vector field at every
point of its domain.

In 3-dimensions a vector is
needed to collect this
information.



The curl of a vector field in space

Example

Find the curl of the vector field F = 〈xz , xyz ,−y2〉.

Solution: Since curlF = ∇× F, we get,

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

xz xyz −y2

∣∣∣∣∣∣ =

(
∂y (−y2)−∂z(xyz)

)
i−

(
∂x(−y2)−∂z(xz)

)
j +

(
∂x(xyz)−∂y (xz)

)
k,

=
(
−2y − xy

)
i−

(
0− x

)
j +

(
yz − 0

)
k,

We conclude that

∇× F = 〈−y(2 + x), x , yz〉. C
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The curl of conservative fields

Recall: A vector field F : R3 → R3 is conservative iff there exists a
scalar field f : R3 → R such that F = ∇f .

Theorem
If a vector field F is conservative, then ∇× F = 0.

Remark:

I This Theorem is usually written as ∇× (∇f ) = 0.

I The converse is true only on simple connected sets.
That is, if a vector field F satisfies ∇× F = 0 on a simple
connected domain D, then there exists a scalar field
f : D ⊂ R3 → R such that F = ∇f .

Proof of the Theorem:

∇× F =
〈(

∂y∂z f − ∂z∂y f
)
,−

(
∂x∂z f − ∂z∂x f

)
,
(
∂x∂y f − ∂y∂x f

)〉

The curl of conservative fields

Example

Is the vector field F = 〈xz , xyz ,−y2〉 conservative?

Solution: We have shown that ∇× F = 〈−y(2 + x), x , yz〉.
Since ∇× F 6= 0, then F is not conservative. C

Example

Is the vector field F = 〈y2z3, 2xyz3, 3xy2z2〉 conservative in R3?

Solution: Notice that

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣
=

〈
(6xyz2 − 6xyz2),−(3y2z2 − 3y2z2), (2yz3 − 2yz3)

〉
= 0.

Since ∇× F = 0 and R3 is simple connected, then F is
conservative, that is, there exists f in R3 such that F = ∇f . C
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Stokes’ Theorem in space

Theorem
The circulation of a differentiable vector field F : D ⊂ R3 → R3

around the boundary C of the oriented surface S ⊂ D satisfies the
equation ∮

C

F · dr =

∫∫
S

(∇× F) · n dσ,

where dr points counterclockwise when the unit vector n normal to
S points in the direction to the viewer (right-hand rule).

S

n

r’ (t) r (t)C



Stokes’ Theorem in space

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution: We compute both sides in

∮
C

F · dr =

∫∫
S

(∇×F) ·n dσ.

C
x

y

z

− 2

− 1

1

2

S

We start computing the circulation

integral on the ellipse x2 + y2

22 = 1.

If we choose the upward normal to S ,
we have to choose a counterclockwise
parametrization for C .

C
x

y

z

− 2

− 1

1

2

n

S

So we choose, for t ∈ [0, 2π],

r(t) = 〈cos(t), 2 sin(t), 0〉.
and the right-hand rule normal n to S
n = 〈0, 0, 1〉.

Stokes’ Theorem in space
Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution: Recall:

∮
C

F · dr =

∫∫
S

(∇× F) · n dσ, with

r(t) = 〈cos(t), 2 sin(t), 0〉, t ∈ [0, 2π] and n = 〈0, 0, 1〉.
The circulation integral is:∮

C

F · dr =

∫ 2π

0
F(t) · r′(t) dt

=

∫ 2π

0
〈cos2(t), 2 cos(t), 0〉 · 〈− sin(t), 2 cos(t), 0〉 dt.

∮
C

F · dr =

∫ 2π

0

[
− cos2(t) sin(t) + 4 cos2(t)

]
dt.



Stokes’ Theorem in space

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr =

∫ 2π

0

[
− cos2(t) sin(t) + 4 cos2(t)

]
dt.

The substitution on the first term u = cos(t) and du = − sin(t) dt,

implies

∫ 2π

0
− cos2(t) sin(t) dt =

∫ 1

1
u2 du = 0.

∮
C

F · dr =

∫ 2π

0
4 cos2(t) dt =

∫ 2π

0
2
[
1 + cos(2t)

]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we conclude that

∮
C

F · dr = 4π.

Stokes’ Theorem in space

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr = 4π and n = 〈0, 0, 1〉.

We now compute the right-hand side in Stokes’ Theorem.

C
x

y

z

− 2

− 1

1

2

n

S I =

∫∫
S

(∇× F) · n dσ.

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

x2 2x z2

∣∣∣∣∣∣ ⇒ ∇× F = 〈0, 0, 2〉.

S is the flat surface {x2 + y2

22 6 1, z = 0}, so dσ = dx dy .



Stokes’ Theorem in space

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr = 4π, n = 〈0, 0, 1〉, ∇× F = 〈0, 0, 2〉, and

dσ = dx dy .

Then,

∫∫
S

(∇× F) · n dσ =

∫ 1

−1

∫ 2
√

1−x2

−2
√

1−x2

〈0, 0, 2〉 · 〈0, 0, 1〉 dy dx .

The right-hand side above is twice the area of the ellipse. Since we
know that an ellipse x2/a2 + y2/b2 = 1 has area πab, we obtain∫∫

S

(∇× F) · n dσ = 4π.

This verifies Stokes’ Theorem. C

Stokes’ Theorem in space

Remark: Stokes’ Theorem implies that for any smooth field F and
any two surfaces S1, S2 having the same boundary curve C holds,∫∫

S1

(∇× F) · n1 dσ1 =

∫∫
S2

(∇× F) · n2 dσ2.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution: (The previous example was the case a → 0.)

x

2

a

1

S

22

2

1
C S

nn
z

y

We must verify Stokes’ Theorem on S2,∮
C

F · dr =

∫∫
S2

(∇× F) · n2 dσ2.



Stokes’ Theorem in space
Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution:
∮

C

F · dr = 4π, ∇× F = 〈0, 0, 2〉, I =

∫∫
S2

(∇× F) · n2 dσ2.

x

2

a

1

S

22

2

1
C S

nn
z

y

S2 is the level surface F = 0 of

F(x , y , z) = x2 +
y2

22
+

z2

a2
− 1.

n2 =
∇F
|∇F|

, ∇F =
〈
2x ,

y

2
,
2z

a2

〉
, (∇× F) · n2 = 2

2z/a2

|∇F|
.

dσ2 =
|∇F|
|∇F · k|

=
|∇F|
2z/a2

⇒ (∇× F) · n2 dσ2 = 2.

Stokes’ Theorem in space

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution:

∮
C

F · dr = 4π and (∇× F) · n2 dσ2 = 2.

Therefore,∫∫
S2

(∇× F) · n2 dσ2 =

∫∫
S1

2 dx dy = 2(2π).

We conclude that

∫∫
S2

(∇× F) · n2 dσ2 = 4π, no matter what is

the value of a > 0. C
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Idea of the proof of Stokes’ Theorem

Split the surface S into n surfaces Si ,
for i = 1, · · · , n, as it is done in the
figure for n = 9.

C

S

∮
C

F · dr =
n∑

i=1

∮
Ci

F · dri

'
n∑

i=1

∮
C̃ i

F · d r̃i (C̃i the border of small rectangles);

=
n∑

i=1

∫∫
R̃i

(∇× F) · ni dA (Green’s Theorem on a plane);

'
∫∫

S

(∇× F) · n dσ.


