Surface area and surface integrals. (Sect. 16.6)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

Review: The area of a surface in space

Theorem
Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Remark: Eq. (7), page 949, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p}=\mathbf{k}$.

Surface area and surface integrals. (Sect. 16.6)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

Surface integrals of a scalar field

Theorem
The integral of a continuous scalar function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over a surface S defined as the level set of $f(x, y, z)=0$ over the bounded plane R is given by

$$
\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to R and $\nabla f \cdot \mathbf{p} \neq 0$.

Remark: In the particular case $g=1$, we recover the formula for the area $A(S)=\iint_{S} d \sigma$ of the surface S, that is,

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

Surface integrals of a scalar field

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

Here $f=2 x+2 y+z-2$, so the surface S is given by $f=0$ in the first octant. Hence, the region R is on the $z=0$ plane, (therefore $\mathbf{p}=\mathbf{k}$) given by the triangle with sides $x=0, y=0$ and $x+y=1$.

So, $\nabla f=\langle 2,2,1\rangle$, hence $|\nabla f|=3$, and $|\nabla f \cdot \mathbf{k}|=1$. Therefore

$$
\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A
$$

Surface integrals of a scalar field

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.

Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S. That means

$$
\begin{gathered}
g(x, y, z(x, y))=x+y+z(x, y)=x+y+(2-2 x-2 y) . \\
g(x, y, z(z, y))=2-x-y . \\
\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A .
\end{gathered}
$$

Surface integrals of a scalar field

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$. Therefore,

$$
\begin{gathered}
3 \int_{0}^{1} \int_{0}^{1-y}(2-x-y) d x d y=3 \int_{0}^{1}\left[(2-y)\left(\left.x\right|_{0} ^{1-y}\right)-\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}\right)\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left[(2-y)(1-y)-\frac{1}{2}(1-y)^{2}\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left(\frac{3}{2}-2 y+\frac{y^{2}}{2}\right) d y \quad \Rightarrow \quad \iint_{S} g d \sigma=2 .
\end{gathered}
$$

Surface area and surface integrals. (Sect. 16.6)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

The flux of a vector field on a surface

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

orientable surface

non-orientable surface

Definition

The flux of a continuous vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ over an orientable surface S in the direction of a unit normal \mathbf{n} is given by

$$
\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

Remark: $\quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$, where S is the level surface $f=0$.

The flux of a vector field on a surface

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$. The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

On the surface S we have that $x^{2}+y^{2}+z^{2}=a^{2}$, therefore, $|\nabla f|=2 a$ on this surface. We obtain that on S the appropriate normal vector is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|} \Rightarrow \mathbf{n}=\frac{1}{a}\langle x, y, z\rangle,\left.\quad z\right|_{s}=z(x, y)
$$

The flux of a vector field on a surface

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says $|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$, hence $d \sigma=\frac{a}{z} d x d y$.

$$
\begin{gathered}
\mathbb{F}=\iint_{R}\left(\langle 0,0, z\rangle \cdot \frac{1}{a}\langle x, y, z\rangle\right) \frac{a}{z} d x d y \\
\mathbb{F}=\iint_{R} \frac{z^{2}}{a} \frac{a}{z} d x d y \quad \Rightarrow \quad \mathbb{F}=\iint_{R} z d x d y,\left.\quad z\right|_{s}=z(x, y)
\end{gathered}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\begin{gathered}
\mathbb{F}=\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r . \\
\mathbb{F}=\frac{\pi}{2} \int_{a^{2}}^{0} u^{1 / 2} \frac{(-d u)}{2}=\frac{\pi}{4} \int_{0}^{a^{2}} u^{1 / 2} d u=\frac{\pi}{4} \frac{2}{3}\left(a^{2}\right)^{3 / 2} \Rightarrow \mathbb{F}=\frac{\pi a^{3}}{6} .
\end{gathered}
$$

Surface area and surface integrals. (Sect. 16.6)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass of thin shells.

Mass and center of mass of thin shells

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \rightarrow \mathbb{R}$ is given by

$$
M=\iint_{S} \rho d \sigma
$$

The center of mass $\overline{\mathbf{r}}=\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ of the thin shell above is

$$
\bar{x}_{i}=\frac{1}{M} \iint_{S} x_{i} \rho d \sigma, \quad i=1,2,3 .
$$

Remark:

- The centroid vector is the particular case of the center of mass vector for an object with constant density.
- See in the textbook the definitions of moments of inertia $I_{x_{i}}$, with $i=1,2,3$, for thin shells.

Mass and center of mass of thin shells

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S. Since
$z^{2}=x^{2}+y^{2}$, we get $|\nabla f|=2 \sqrt{2} z$. Also $\nabla f \cdot \mathbf{k}=-2 z$. So,

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\frac{2 \sqrt{2} z}{2 z}=\sqrt{2} \quad \Rightarrow \quad M=\iint_{R} \sqrt{2} d A .
$$

Mass and center of mass of thin shells

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

$$
\text { We conclude } M=3 \sqrt{2} \pi
$$

By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\begin{gathered}
\bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y . \\
\bar{z}=\frac{1}{3 \pi} \int_{0}^{2 \pi} \int_{1}^{2} r^{2} d r d \theta=\frac{2 \pi}{3 \pi}\left(\left.\frac{r^{3}}{3}\right|_{1} ^{3}\right)=\frac{2}{9}(8-1) \quad \Rightarrow \quad \bar{z}=\frac{14}{9} .
\end{gathered}
$$

