
Surface area and surface integrals. (Sect. 16.6)

I Review: The area of a surface in space.

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass thin shells.

Review: The area of a surface in space

Theorem
Given a smooth function f : R3 → R, the area of a level surface
S = {f (x , y , z) = 0}, over a closed, bounded region R in the plane
{z = 0}, is given by

A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.

z S = { f (x,y,z) = 0 }

k
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x

Remark: Eq. (7), page 949, in
the textbook is more general
than the equation above, since
the region R can be located on
any plane, not only the plane
{z = 0} considered here.

The vector p in the textbook is
the vector normal to R. In our
case p = k.
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Surface integrals of a scalar field

Theorem
The integral of a continuous scalar function g : R3 → R over a
surface S defined as the level set of f (x , y , z) = 0 over the
bounded plane R is given by∫∫

S

g dσ =

∫∫
R

g
|∇f |

|∇f · p|
dA,

where p is a unit vector normal to R and ∇f · p 6= 0.

Remark: In the particular case g = 1, we recover the formula for

the area A(S) =

∫∫
S

dσ of the surface S , that is,

A(S) =

∫∫
R

|∇f |
|∇f · p|

dA.



Surface integrals of a scalar field

Example

Integrate the function g(x , y , z) = x + y + z over the surface given
by the portion of the plane 2x + 2y + z = 2 that lies in the first
octant.

Solution: Recall:

∫∫
S

g dσ =

∫∫
R

g
|∇f |

|∇f · p|
dA.

x

2x + 2y + z = 2
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Here f = 2x + 2y + z − 2, so the
surface S is given by f = 0 in the first
octant. Hence, the region R is on the
z = 0 plane, (therefore p = k) given by
the triangle with sides x = 0, y = 0 and
x + y = 1.

So, ∇f = 〈2, 2, 1〉, hence |∇f | = 3, and |∇f · k| = 1. Therefore∫∫
S

g dσ =

∫∫
R

g(x , y , z) 3 dA.

Surface integrals of a scalar field

Example

Integrate the function g(x , y , z) = x + y + z over the surface given
by the portion of the plane 2x + 2y + z = 2 that lies in the first
octant.

Solution: Recall:

∫∫
S

g dσ =

∫∫
R

g(x , y , z) 3 dA.

Now, function g must be evaluated on the surface S . That means

g(x , y , z(x , y)) = x + y + z(x , y) = x + y + (2− 2x − 2y).

g(x , y , z(z , y)) = 2− x − y .

∫∫
S

g dσ = 3

∫∫
R

(2− x − y) dA.
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∫∫
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The region R is the triangle in the plane z = 0 given by the lines
x = 0, y = 0, and x + y = 1. Therefore,

3

∫ 1

0

∫ 1−y

0
(2−x−y) dx dy = 3

∫ 1

0

[
(2−y)

(
x
∣∣∣1−y

0

)
−

(x2

2

∣∣∣1−y

0

)]
dy∫∫

S

g dσ = 3

∫ 1

0

[
(2− y)(1− y)− 1

2
(1− y)2

]
dy∫∫

S

g dσ = 3

∫ 1

0

(3

2
− 2y +

y2

2

)
dy ⇒

∫∫
S

g dσ = 2. C
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The flux of a vector field on a surface

Definition
A surface S ⊂ R3 is called orientable if it is possible to define on S
a continuous, unit vector field n normal to S .

orientable surface

n n

non−orientable surface
n

n

Moebius
strip

Definition
The flux of a continuous vector field F : R3 → R3 over an
orientable surface S in the direction of a unit normal n is given by

F =

∫∫
S

F · n dσ.

Remark: dσ =
|∇f |

|∇f · p|
dA, where S is the level surface f = 0.

The flux of a vector field on a surface

Example

Find the flux of the field F = 〈0, 0, z〉 across the portion of the
sphere x2 + y2 + z2 = a2 in the first octant in the direction away
from the origin.

Solution: Recall: F =

∫∫
S

F · n dσ.

In this case S is the level surface f = 0, for f = x2 + y2 + z2 − a2.
The unit normal vector n is proportional to ∇f .

∇f = 〈2x , 2y , 2z〉, |∇f | = 2
√

x2 + y2 + z2.

On the surface S we have that x2 + y2 + z2 = a2,
therefore,|∇f | = 2a on this surface. We obtain that on S the
appropriate normal vector is

n =
∇f

|∇f |
⇒ n =

1

a
〈x , y , z〉, z |S = z(x , y).



The flux of a vector field on a surface

Example

Find the flux of the field F = 〈0, 0, z〉 across the portion of the
sphere x2 + y2 + z2 = a2 in the first octant in the direction away
from the origin.

Solution: Recall: F =

∫∫
S

F · n dσ and n =
1

a
〈x , y , z〉 on S .

Since dσ =
|∇f |
|∇f · k|

dx dy , and ∇f = 2〈x , y , z〉, which on S says

|∇f | = 2a, we conclude, dσ =
2a

2z
dx dy , hence dσ =

a

z
dx dy .

F =

∫∫
R

(
〈0, 0, z〉 · 1

a
〈x , y , z〉

) a

z
dx dy .

F =

∫∫
R

z2

a

a

z
dx dy ⇒ F =

∫∫
R

z dx dy , z |S = z(x , y).

The flux of a vector field on a surface.
Example

Find the flux of the field F = 〈0, 0, z〉 across the portion of the
sphere x2 + y2 + z2 = a2 in the first octant in the direction away
from the origin.

Solution: Recall: F =

∫∫
R

z dx dy , and z must be evaluated on S .

S

y

n

Ra

az

a

x

The integral is only on the first octant.

F =

∫∫
R

√
a2 − x2 − y2 dx dy .

We use polar coordinates on R ⊂ {z = 0}.

F =

∫ π/2

0

∫ a

0

√
a2 − r2 r dr dθ. u = a2 − r2, du = −2r dr .

F =
π

2

∫ 0

a2

u1/2 (−du)

2
=

π

4

∫ a2

0
u1/2 du =

π

4

2

3
(a2)3/2 ⇒ F =

πa3

6
.
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Mass and center of mass of thin shells

Definition
The mass M of a thin shell described by the surface S in space
with mass per unit area function ρ : S → R is given by

M =

∫∫
S

ρ dσ.

The center of mass r = 〈x1, x2, x3〉 of the thin shell above is

x i =
1

M

∫∫
S

xi ρ dσ, i = 1, 2, 3.

Remark:

I The centroid vector is the particular case of the center of
mass vector for an object with constant density.

I See in the textbook the definitions of moments of inertia Ixi ,
with i = 1, 2, 3, for thin shells.



Mass and center of mass of thin shells
Example

Find the centroid of the surface S given by x2 + y2 = z2 between
the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

R
x

2

1

2

y1

Sz We first compute the area, M, of S ,

M =

∫∫
S

dσ =

∫∫
R

|∇f |
|∇f · k|

dA.

Here f = x2 + y2 − z2, therefore,

∇f = 〈2x , 2y ,−2z〉.

Hence |∇f | = 2
√

x2 + y2 + z2, evaluated on S . Since
z2 = x2 + y2, we get |∇f | = 2

√
2 z . Also ∇f · k = −2z . So,

|∇f |
|∇f · k|

=
2
√

2 z

2z
=
√

2 ⇒ M =

∫∫
R

√
2 dA.

Mass and center of mass of thin shells
Example

Find the centroid of the surface S given by x2 + y2 = z2 between
the planes z = 1 and z = 2.

Solution: Recall:
|∇f |
|∇f · k|

=
√

2 and M =

∫∫
R

√
2 dA.

R
x

2

1

2

y1

Sz We use polar coordinates in {z = 0},

M =
√

2

∫ 2π

0

∫ 2

1
r dr dθ = 2π

√
2
( r2

2

∣∣∣2
1

)
We conclude M = 3

√
2 π.

By symmetry, the only non-zero component of the centroid is z .

z =
1

M

∫∫
R

z
|∇f |
|∇f · k|

dA =

√
2

3
√

2π

∫∫
R

√
x2 + y2 dx dy .

z =
1

3π

∫ 2π

0

∫ 2

1
r2dr dθ =

2π

3π

( r3

3

∣∣∣3
1

)
=

2

9
(8− 1) ⇒ z =

14

9
.


