- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Review: Arc length and line integrals

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ is $\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$.
- The circulation of a function $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

- The flux of a function $\mathbf{F}:\{z=0\} \cap \mathbb{R}^{3} \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ along a loop $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ is $\mathbb{F}=\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$.
- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Review: Double integral of a scalar function

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y .
$$

- The area of a flat surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We will show how to compute:

- The area of a non-flat surface in space. (Today.)
- The integral of a scalar function f on a surface is space.
- The flux of a vector-valued function \mathbf{F} on a surface in space.
- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

Explicit, implicit, parametric equations of surfaces

Review: Curves on \mathbb{R}^{2} can be defined in:

- Explicit form, $y=f(x)$;
- Implicit form, $F(x, y)=0$;
- Parametric form, $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

The vector $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is tangent to the curve.
Review: Surfaces in \mathbb{R}^{3} can be defined in:

- Explicit form, $z=f(x, y)$;
- Implicit form, $F(x, y, z)=0$;
- Parametric form, $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.

Two vectors tangent to the surface are

$$
\begin{aligned}
& \partial_{u} \mathbf{r}(u, v)=\left\langle\partial_{u} x(u, v), \partial_{u} y(u, v), \partial_{u} z(u, v)\right\rangle, \\
& \partial_{v} \mathbf{r}(u, v)=\left\langle\partial_{v} x(u, v), \partial_{v} y(u, v), \partial_{v} z(u, v)\right\rangle .
\end{aligned}
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the cone $z=\sqrt{x^{2}+y^{2}}$, and two tangent vectors.

Solution: Use cylindrical coordinates: $x=r \cos (\theta), y=r \sin (\theta)$, $z=z$. Parameters of the surface: $u=r, v=\theta$. Then

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta), \quad z(r, \theta)=r
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), r\rangle
$$

Two tangent vectors to the cone are $\partial_{r} \mathbf{r}$ and $\partial_{\theta} \mathbf{r}$,

$$
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 1\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle
$$

Explicit, implicit, parametric equations of surfaces

Example

Find a parametric expression for the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, and two tangent vectors.
Solution: Use spherical coordinates:
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$.
Parameters of the surface: $u=\theta, v=\phi$.

$$
x=R \cos (\theta) \sin (\phi), \quad y=R \sin (\theta) \sin (\phi), \quad z=R \cos (\phi)
$$

Using vector notation, a parametric equation of the cone is

$$
\mathbf{r}(\theta, \phi)=R\langle\cos (\theta) \sin (\phi), \quad \sin (\theta) \sin (\phi), \quad \cos (\phi)\rangle .
$$

Two tangent vectors to the paraboloid are $\partial_{\theta} \mathbf{r}$ and $\partial_{\phi} \mathbf{r}$,

$$
\begin{gather*}
\partial_{\theta} \mathbf{r}=R\langle-\sin (\theta) \sin (\phi), \quad \cos (\theta) \sin (\phi), \quad 0\rangle, \\
\partial_{\phi} \mathbf{r}=R\langle\cos (\theta) \cos (\phi), \sin (\theta) \cos (\phi), \quad-\sin (\phi)\rangle .
\end{gather*}
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

The area of a surface in parametric form

Theorem

Given a smooth surface S with parametric equation
$\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for $u \in\left[u_{0}, u_{1}\right]$ and $v \in\left[v_{0}, v_{1}\right]$ is given by

$$
A(S)=\int_{u_{0}}^{u_{1}} \int_{v_{0}}^{v_{1}}\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u .
$$

Remark: The function

$$
d \sigma=\left|\partial_{u} \mathbf{r} \times \partial_{v} \mathbf{r}\right| d v d u
$$

represents the area of a small region on the surface.

This is the generalization to surfaces of the arc-length formula for the length of a curve.

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Use cylindrical coordinates. The surface in parametric form is

$$
\mathbf{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

The tangent vectors to the surface $\partial_{r} \mathbf{r}, \partial_{\theta} \mathbf{r}$ are

$$
\begin{gathered}
\partial_{r} \mathbf{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle, \quad \partial_{\theta} \mathbf{r}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle . \\
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos (\theta) & \sin (\theta) & 2 r \\
-r \sin (\theta) & r \cos (\theta) & 0
\end{array}\right| \\
\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle .
\end{gathered}
$$

The area of a surface in parametric form

Example

Find an expression for the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}=\left\langle-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right\rangle$.

$$
\begin{gathered}
\left|\partial_{r} \mathbf{r} \times \partial_{\theta} \mathbf{r}\right|=\sqrt{4 r^{4}+r^{2}}=r \sqrt{1+4 r^{2}} \\
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{1+4 r^{2}} d r d \theta
\end{gathered}
$$

This integral will be done later on by substitution. The result is:

$$
A(S)=\frac{\pi}{6}\left[(17)^{3 / 2}-1\right]
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- Explicit, implicit, parametric equations of surfaces.
- The area of a surface in space.
- The surface is given in parametric form.
- The surface is given in explicit form.

The area of a surface in space in explicit form

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (7), page 949, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p}=\mathbf{k}$.

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Example

Find the area of $S=\{z-1=0\}$ over R in $\{z=0\}$.
Solution: This is simple: $f(x, y, z)=z-1$, so $\nabla f=\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=1 \quad \Rightarrow \quad A(S)=\iint_{R} d x d y=A(R)
$$

Remark: The formula for $A(S)$ is reasonable: Every flat horizontal surface S over a flat horizontal region R satisfies $A(S)=A(R)$.

The area of a surface in space in explicit form
Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Example

Find the area of $S=\{y+z-1=0\}$ over R in $\{z=0\}$.
Solution: The plane S intersects the horizontal plane at a $\pi / 4$ angle. So, $f(x, y, z)=y+z-1$, and $\nabla f=\mathbf{j}+\mathbf{k}$, hence

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2} \Rightarrow A(S)=\iint_{R} \sqrt{2} d x d y \Rightarrow A(S)=\sqrt{2} A(R)
$$

Remark: The formula for $A(S)$ is still reasonable: Every flat surface S having an angle $\pi / 4$ over a flat horizontal region R satisfies $A(S)=\sqrt{2} A(R)$.

The area of a surface in space in explicit form

Recall: The area of a level surface $S=\{f(x, y, z)=0\}$ over a flat horizontal region R in $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Remark: The formula for $A(S)$ can be interpreted as follows:
The factor $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}$ is the angle correction function needed to obtain the $A(S)$ by correcting the $A(R)$ by the relative inclination
 of S with respect to R.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

Recall: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$. Here $\nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.
So we can write down the expression for $A(S)$ as follows,

$$
A(S)=\iint_{R} \frac{3}{2} d x d y=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y .
$$

The area of a surface in space in explicit form

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)=3 \frac{4}{3} \Rightarrow A(S)=4
\end{gathered}
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1 \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y
\end{gathered}
$$

Since R is a disk radius 2 , it is convenient to use polar coordinates in \mathbb{R}^{2}. We obtain

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta
$$

The area of a surface in space in explicit form

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{gathered}
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r \\
A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u=\frac{2 \pi}{8} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{17}\right) .
\end{gathered}
$$

We conclude: $A(S)=\frac{\pi}{6}\left[(17)^{3 / 2}-1\right]$.

The area of a surface in space in explicit form

Remark: The formula for the area of a surface in space can be generalized as follows.

Theorem
The area of a surface S given by $f(x, y, z)=0$ over a closed and bounded plane region R in space is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to the region R and $\nabla f \cdot \mathbf{p} \neq 0$.

The area of a surface in space in explicit form
Proof in a simple case: Assume that the surface us given in explicit form:

$$
S=\{(x, y, z): z=g(x, y)\}
$$

On the one hand, a simple parametric form is to use $u=x, v=y$ and $z(u, v)=g(u, v)$. Hence

$$
\begin{gathered}
\mathbf{r}(x, y)=\langle x, y, g(x, y)\rangle \Rightarrow\left\{\begin{array}{l}
\partial_{x} \mathbf{r}=\left\langle 1,0, \partial_{x} g\right\rangle \\
\partial_{y} \mathbf{r}=\left\langle 0,1, \partial_{y} g\right\rangle
\end{array}\right. \\
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle
\end{gathered}
$$

On the other hand, an implicit form for the surface is

$$
f(x, y, z)=g(x, y)-z
$$

Therefore, $\quad \partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1$.

The area of a surface in space in explicit form

Proof in a simple case: Recall: $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle-\partial_{x} g,-\partial_{y} g, 1\right\rangle$ and

$$
\partial_{x} f=\partial_{x} g, \quad \partial_{y} f=\partial_{y} g, \quad \partial_{z} f=-1
$$

One can show (with chain rule) that $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}$ is given by

$$
\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\left\langle\frac{\partial_{x} f}{\partial_{z} f}, \frac{\partial_{x} f}{\partial_{z} f}, 1\right\rangle \quad \Rightarrow \quad \partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{1}{\partial_{z} f}\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle
$$

That is, $\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}=\frac{\nabla f}{\nabla f \cdot \mathbf{k}}$. We then obtain

$$
A(S)=\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}}\left|\partial_{x} \mathbf{r} \times \partial_{y} \mathbf{r}\right| d y d x=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space in explicit form
Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

It is simple to see that

$$
\Delta P=|\mathbf{u} \times \mathbf{v}|
$$

and

$$
\begin{aligned}
\mathbf{u} & =\left\langle\Delta x, 0,\left(z_{i}-\hat{z}_{i}\right)\right\rangle \\
\mathbf{v} & =\left\langle 0, \Delta y,\left(z_{i}-\bar{z}_{i}\right)\right\rangle
\end{aligned}
$$

Therefore,
$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta x & 0 & \left(z_{i}-\hat{z}_{i}\right) \\ 0 & \Delta y & \left(z_{i}-\bar{z}_{i}\right)\end{array}\right|=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The area of a surface in space in explicit form
Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right)
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{gathered}
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y \\
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y \\
\Delta P=\frac{\left|(\nabla f)_{i}\right|}{\left|(\nabla f \cdot \mathbf{k})_{i}\right|} \Delta x \Delta y \quad \Rightarrow \quad A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
\end{gathered}
$$

