- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Review: Green's Theorem on a plane

Theorem

Given a field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ and a loop C enclosing a region $R \in \mathbb{R}^{2}$ described by the function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$, with unit tangent vector \mathbf{u} and exterior normal vector \mathbf{n}, then holds:

- The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{u} d s$ satisfies:

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

- The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$ satisfies:

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y
$$

Circulation-tangential form:

$$
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y .
$$

Flux-normal form:

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y .
$$

Theorem
The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Sketch of the proof of Green's Theorem

We want to prove that for every differentiable vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ the Green Theorem in tangential form holds,

$$
\int_{C}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

We only consider a simple domain like the one in the pictures.

Using the picture on the left we show that

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y ;
$$

and using the picture on the right we show that

$$
\int_{C} F_{y}(t) y^{\prime}(t) d t=\iint_{R}\left(\partial_{x} F_{y}\right) d x d y
$$

Sketch of the proof of Green's Theorem

Show that for $F_{x}(t)=F_{x}(x(t), y(t))$ holds

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d x d y
$$

The path C can be described by the curves \mathbf{r}_{0} and \mathbf{r}_{1} given by

$$
\begin{aligned}
\mathbf{r}_{0}(t) & =\left\langle t, g_{0}(t)\right\rangle, & & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}(t) & =\left\langle\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right\rangle & & t \in\left[x_{0}, x_{1}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{array}{ll}
\mathbf{r}_{0}^{\prime}(t)=\left\langle 1, g_{0}^{\prime}(t)\right\rangle, & t \in\left[x_{0}, x_{1}\right] \\
\mathbf{r}_{1}^{\prime}(t)=\left\langle-1,-g_{1}^{\prime}\left(x_{1}+x_{0}-t\right)\right\rangle & \\
t \in\left[x_{0}, x_{1}\right] .
\end{array}
$$

Recall: $F_{x}(t)=F_{x}\left(t, g_{0}(t)\right)$ on \mathbf{r}_{0}, and $F_{x}(t)=F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right)$ on \mathbf{r}_{1}.

Sketch of the proof of Green's Theorem

$$
\begin{aligned}
& \int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} F_{x}\left(t, g_{0}(t)\right) d t \\
- & \int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t
\end{aligned}
$$

Substitution in the second term: $\tau=x_{1}+x_{0}-t$, so $d \tau=-d t$.

$$
\begin{gathered}
-\int_{x_{0}}^{x_{1}} F_{x}\left(\left(x_{1}+x_{0}-t\right), g_{1}\left(x_{1}+x_{0}-t\right)\right) d t= \\
-\int_{x_{1}}^{x_{0}} F_{x}\left(\tau, g_{1}(\tau)\right)(-d \tau)=-\int_{x_{0}}^{x_{1}} F_{x}\left(\tau, g_{1}(\tau)\right) d \tau .
\end{gathered}
$$

Therefore, $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}}\left[F_{x}\left(t, g_{0}(t)\right)-F_{x}\left(t, g_{1}(t)\right)\right] d t$.
We obtain: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.

Sketch of the proof of Green's Theorem

Recall: $\int_{C} F_{x}(t) x^{\prime}(t) d t=\int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)}\left[-\partial_{y} F_{x}(t, y)\right] d y d t$.
This result is precisely what we wanted to prove:

$$
\int_{C} F_{x}(t) x^{\prime}(t) d t=\iint_{R}\left(-\partial_{y} F_{x}\right) d y d x
$$

We just mention that the result

$$
\int_{C} F_{y}(t) y^{\prime}(t) d t=\iint_{R}\left(\partial_{x} F_{y}\right) d x d y
$$

is proven in a similar way using the parametrization of the C given in the
 picture.

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Divergence and curl of a function on a plane

Definition

The curl of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}
$$

The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y} .
$$

Remark: Both forms of Green's Theorem can be written as:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s & =\iint_{R}(\operatorname{curl} \mathbf{F})_{z} d x d y \\
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\iint_{R} \operatorname{div} \mathbf{F} d x d y
\end{aligned}
$$

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_{z}$?
Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$
\mathbf{F}=\langle-y, x\rangle \quad \Rightarrow \quad(\operatorname{curl} \mathbf{F})_{z}=\partial_{x} F_{y}-\partial_{y} F_{x}=2
$$

If we place a small ball at $(0,0)$, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

If we place a small ball at everywhere in the plane, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_{z}$.

Remark: The curl of a field measures its rotation.

Divergence and curl of a function on a plane

Remark: What type of information about \mathbf{F} is given in $\operatorname{div} \mathbf{F}$?
Example: Suppose \mathbf{F} is the velocity field of a gas and

$$
\mathbf{F}=\langle x, y\rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}=2
$$

The field \mathbf{F} represents the gas as is heated with a heat source at $(0,0)$. The heated gas expands in all directions, radially out form $(0,0)$. The $\operatorname{div} F$ measures that expansion.

Remark: The divergence of a field measures its expansion.
Remarks:

- Notice that for $\mathbf{F}=\langle x, y\rangle$ we have $(\operatorname{curl} \mathbf{F})_{z}=0$.
- Notice that for $\mathbf{F}=\langle-y, x\rangle$ we have $\operatorname{div} \mathbf{F}=0$.
- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$
\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=\oint_{C}\left(F_{x} d y-F_{y} d x\right)
$$

If \mathbf{F} is such that the left-hand side above has integrand 1 , then that integral is the area $A(R)$ of the region R. Indeed:

$$
\begin{gathered}
\mathbf{F}=\langle x, 0\rangle \quad \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C} x d y \\
\mathbf{F}=\langle 0, y\rangle \quad \Rightarrow \iint_{R} d x d y=A(R)=\oint_{C}-y d x . \\
\mathbf{F}=\frac{1}{2}\langle x, y\rangle \Rightarrow \iint_{R} d x d y=A(R)=\frac{1}{2} \oint_{C}(x d y-y d x) .
\end{gathered}
$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t)=\langle a \cos (t), b \sin (t)\rangle$, with $t \in[0,2 \pi]$ and a, b positive.

Solution: We use: $A(R)=\oint_{C} x d y$.
We need to compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), b \cos (t)\rangle$. Then,

$$
\begin{gathered}
A(R)=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t \\
A(R)=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t=a b \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 t)] d t
\end{gathered}
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we obtain $A(R)=\frac{a b}{2} 2 \pi$, that is,

$$
A(R)=\pi a b
$$

