

Review: Green's Theorem on a plane

Theorem

Given a field $\mathbf{F} = \langle F_x, F_y \rangle$ and a loop C enclosing a region $R \in \mathbb{R}^2$ described by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$, with unit tangent vector \mathbf{u} and exterior normal vector \mathbf{n} , then holds:

• The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds$ satisfies:

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] dt = \iint_R \left(\partial_x F_y - \partial_y F_x \right) dx \, dy.$$

• The counterclockwise line integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ satisfies:

$$\int_{t_0}^{t_1} \left[F_x(t) \, y'(t) - F_y(t) \, x'(t) \right] dt = \iint_R \left(\partial_x F_x + \partial_y F_y \right) dx \, dy.$$

Review: Green's Theorem on a plane

Circulation-tangential form:

 $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \iint_{D} \left(\partial_{x} F_{y} - \partial_{y} F_{x} \right) \, dx \, dy.$

Flux-normal form:

 $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{D} \left(\partial_{x} F_{x} + \partial_{y} F_{y} \right) \, dx \, dy.$

Theorem

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Sketch of the proof of Green's Theorem Show that for $F_x(t) = F_x(x(t), y(t))$ holds $\int_C F_x(t) x'(t) dt = \iint_R (-\partial_y F_x) dx dy;$ The path *C* can be described by the curves \mathbf{r}_0 and \mathbf{r}_1 given by $\mathbf{r}_0(t) = \langle t, g_0(t) \rangle, \qquad t \in [x_0, x_1]$ $\mathbf{r}_1(t) = \langle (x_1 + x_0 - t), g_1(x_1 + x_0 - t) \rangle \qquad t \in [x_0, x_1].$ Therefore,

$$egin{aligned} \mathbf{r}_0'(t) &= \langle 1, g_0'(t)
angle, & t \in [x_0, x_1] \ \mathbf{r}_1'(t) &= \langle -1, -g_1'(x_1 + x_0 - t)
angle & t \in [x_0, x_1]. \end{aligned}$$

Recall: $F_x(t) = F_x(t, g_0(t))$ on \mathbf{r}_0 , and $F_x(t) = F_x((x_1 + x_0 - t), g_1(x_1 + x_0 - t))$ on \mathbf{r}_1 .

Sketch of the proof of Green's Theorem

$$\int_{c} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$

$$-\int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$
Substitution in the second term: $\tau = x_{1} + x_{0} - t$, so $d\tau = -dt$.

$$-\int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt =$$

$$-\int_{x_{1}}^{x_{0}} F_{x}(\tau, g_{1}(\tau)) (-d\tau) = -\int_{x_{0}}^{x_{1}} F_{x}(\tau, g_{1}(\tau)) d\tau.$$
Therefore, $\int_{c} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} [F_{x}(t, g_{0}(t)) - F_{x}(t, g_{1}(t))] dt.$
We obtain: $\int_{c} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)} [-\partial_{y}F_{x}(t, y)] dy dt.$

Sketch of the proof of Green's Theorem

Recall:
$$\int_{C} F_{x}(t) x'(t) dt = \int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)} \left[-\partial_{y} F_{x}(t, y) \right] dy dt.$$

This result is precisely what we wanted to prove:

$$\int_{C} F_{x}(t) x'(t) dt = \iint_{R} (-\partial_{y} F_{x}) dy dx.$$

We just mention that the result

$$\int_C F_y(t) y'(t) dt = \iint_R (\partial_x F_y) dx dy.$$

is proven in a similar way using the parametrization of the C given in the picture.

Divergence and curl of a function on a plane

Definition The *curl* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

$$(\operatorname{curl} \mathbf{F})_{z} = \partial_{x}F_{y} - \partial_{y}F_{x}.$$

The *divergence* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

div
$$\mathbf{F} = \partial_x F_x + \partial_y F_y$$
.

Remark: Both forms of Green's Theorem can be written as:

$$\oint_C \mathbf{F} \cdot \mathbf{u} \, ds = \iint_R (\operatorname{curl} \mathbf{F})_z \, dx \, dy.$$
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R \operatorname{div} \mathbf{F} \, dx \, dy.$$

• Notice that for $\mathbf{F} = \langle -y, x \rangle$ we have div $\mathbf{F} = 0$.

Area computed with a line integral

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) \, dx \, dy = \oint_{C} (F_{x} \, dy - F_{y} \, dx)$$

If **F** is such that the left-hand side above has integrand 1, then that integral is the area A(R) of the region R. Indeed:

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$
$$\mathbf{F} = \langle 0, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} -y \, dx.$$
$$\mathbf{F} = \frac{1}{2} \langle x, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \frac{1}{2} \oint_{C} (x \, dy - y \, dx).$$

Area computed with a line integral

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a \cos(t), b \sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use: $A(R) = \oint_{C} x \, dy$. We need to compute $\mathbf{r}'(t) = \langle -a\sin(t), b\cos(t) \rangle$. Then,

$$A(R) = \int_0^{2\pi} x(t) \, y'(t) \, dt = \int_0^{2\pi} a \cos(t) \, b \cos(t) \, dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt = ab \int_0^{2\pi} \frac{1}{2} [1 + \cos(2t)] dt.$$

Since $\int_0^{2\pi} \cos(2t) dt = 0$, we obtain $A(R) = \frac{ab}{2} 2\pi$, that is,

 $A(R) = \pi ab.$