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Review: Green’s Theorem on a plane

Theorem
Given a field F = 〈Fx ,Fy 〉 and a loop C enclosing a region R ∈ R2

described by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1], with
unit tangent vector u and exterior normal vector n, then holds:

I The counterclockwise line integral

∮
C

F · u ds satisfies:∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

I The counterclockwise line integral

∮
C

F · n ds satisfies:∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .
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Circulation-tangential form:∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .
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Flux-normal form:∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

Theorem
The Green Theorem in tangential form is equivalent to the Green
Theorem in normal form.
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Sketch of the proof of Green’s Theorem

We want to prove that for every differentiable vector field
F = 〈Fx ,Fy 〉 the Green Theorem in tangential form holds,∫

C

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

We only consider a simple domain like the one in the pictures.
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Using the picture on the left we show that∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

and using the picture on the right we show that∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .
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Show that for Fx(t) = Fx(x(t), y(t)) holds∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

The path C can be described by the curves r0 and r1 given by

r0(t) = 〈t, g0(t)〉, t ∈ [x0, x1]

r1(t) = 〈(x1 + x0 − t), g1(x1 + x0 − t)〉 t ∈ [x0, x1].

Therefore,

r′
0(t) = 〈1, g ′

0(t)〉, t ∈ [x0, x1]

r′
1(t) = 〈−1,−g ′

1(x1 + x0 − t)〉 t ∈ [x0, x1].

Recall: Fx(t) = Fx(t, g0(t)) on r0,
and Fx(t) = Fx((x1 + x0 − t), g1(x1 + x0 − t)) on r1.



Sketch of the proof of Green’s Theorem∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

Fx(t, g0(t)) dt

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt

Substitution in the second term: τ = x1 + x0 − t, so dτ = −dt.

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt =

−
∫ x0

x1

Fx(τ, g1(τ)) (−dτ) = −
∫ x1

x0

Fx(τ, g1(τ)) dτ.

Therefore,

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

[
Fx(t, g0(t))− Fx(t, g1(t))

]
dt.

We obtain:

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

∫ g1(t)

g0(t)

[
−∂yFx(t, y)

]
dy dt.

Sketch of the proof of Green’s Theorem

Recall:

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

∫ g1(t)

g0(t)

[
−∂yFx(t, y)

]
dy dt.

This result is precisely what we wanted to prove:∫
C

Fx(t)x
′(t) dt =

∫∫
R

(
−∂yFx

)
dy dx .

We just mention that the result∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .

is proven in a similar way using the
parametrization of the C given in the
picture.
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Divergence and curl of a function on a plane

Definition
The curl of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar(

curlF
)
z

= ∂xFy − ∂yFx .

The divergence of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar

divF = ∂xFx + ∂yFy .

Remark: Both forms of Green’s Theorem can be written as:∮
C

F · u ds =

∫∫
R

(
curlF

)
z
dx dy .

∮
C

F · n ds =

∫∫
R

divF dx dy .



Divergence and curl of a function on a plane

Remark: What type of information about F is given in
(
curlF

)
z
?

Example: Suppose F is the velocity field of a viscous fluid and

F = 〈−y , x〉 ⇒
(
curlF

)
z

= ∂xFy − ∂yFx = 2.

x

y

If we place a small ball at (0, 0), the ball will
spin around the z-axis with speed proportional
to

(
curlF

)
z
.

x

y
If we place a small ball at everywhere in the
plane, the ball will spin around the z-axis with
speed proportional to

(
curlF

)
z
.

Remark: The curl of a field measures its rotation.

Divergence and curl of a function on a plane

Remark: What type of information about F is given in divF?

Example: Suppose F is the velocity field of a gas and

F = 〈x , y〉 ⇒ divF = ∂xFx + ∂yFy = 2.

x

y

The field F represents the gas as is heated
with a heat source at (0, 0). The heated gas
expands in all directions, radially out form
(0, 0). The divF measures that expansion.

Remark: The divergence of a field measures its expansion.

Remarks:

I Notice that for F = 〈x , y〉 we have
(
curlF

)
z

= 0.

I Notice that for F = 〈−y , x〉 we have divF = 0.
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Area computed with a line integral
Remark: Any of the two versions of Green’s Theorem can be used
to compute areas using a line integral. For example:∫∫

R

(
∂xFx + ∂yFy

)
dx dy =

∮
C

(
Fx dy − Fy dx)

If F is such that the left-hand side above has integrand 1, then
that integral is the area A(R) of the region R. Indeed:

F = 〈x , 0〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

x dy .

F = 〈0, y〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

−y dx .

F =
1

2
〈x , y〉 ⇒

∫∫
R

dx dy = A(R) =
1

2

∮
C

(
x dy − y dx

)
.



Area computed with a line integral

Example

Use Green’s Theorem to find the area of the region enclosed by the
ellipse r(t) = 〈a cos(t), b sin(t)〉, with t ∈ [0, 2π] and a, b positive.

Solution: We use: A(R) =

∮
C

x dy .

We need to compute r′(t) = 〈−a sin(t), b cos(t)〉. Then,

A(R) =

∫ 2π

0
x(t) y ′(t) dt =

∫ 2π

0
a cos(t) b cos(t) dt.

A(R) = ab

∫ 2π

0
cos2(t) dt = ab

∫ 2π

0

1

2

[
1 + cos(2t)

]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we obtain A(R) =

ab

2
2π, that is,

A(R) = πab. C


