- Review: Line integrals and flux integrals.
- Green's Theorem on a plane.
- Circulation-tangential form.
- Flux-normal form.
- Tangential and normal forms equivalence.

Review: The line integral of a vector field along a curve

Definition

The line integral of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, along the curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$, with arc length function s, is given by

$$
\int_{s_{0}}^{s_{1}} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{u}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}$, and $s_{0}=s\left(t_{0}\right), s_{1}=s\left(t_{1}\right)$.

Example

Remark: Since $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ and $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, in components,

$$
\begin{gathered}
\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{t_{0}}^{t_{1}}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t .
\end{gathered}
$$

Review: The line integral of a vector field along a curve

Example

Evaluate the line integral of $\mathbf{F}=\langle-y, x\rangle$ along the loop
$\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$ for $t \in[0,2 \pi]$.
Solution: Evaluate \mathbf{F} along the curve: $\mathbf{F}(t)=\langle-\sin (t), \cos (t)\rangle$.
Now compute the derivative vector $\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle$.
Then evaluate the line integral in components,

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t \\
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{0}^{2 \pi}[(-\sin (t))(-\sin (t))+\cos (t) \cos (t)] d t \\
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{0}^{2 \pi}\left[\sin ^{2}(t)+\cos ^{2}(t)\right] d t \quad \Rightarrow \quad \oint_{C} \mathbf{F} \cdot \mathbf{u} d s=2 \pi
\end{gathered}
$$

Review: The flux across a plane loop

Definition

The flux of a vector field $\mathbf{F}:\{z=0\} \subset \mathbb{R}^{3} \rightarrow\{z=0\} \subset \mathbb{R}^{3}$ along a closed plane loop $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow\{z=0\} \subset \mathbb{R}^{3}$ is given by

$$
\mathbb{F}=\oint_{c} \mathbf{F} \cdot \mathbf{n} d s
$$

where \mathbf{n} is the unit outer normal vector to the curve inside the plane $\{z=0\}$.

Example

Remark: Since $\mathbf{F}=\left\langle F_{x}, F_{y}, 0\right\rangle$, $\mathbf{r}(t)=\langle x(t), y(t), 0\rangle, d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, and $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}\right|}\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle$, in components,

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t .
$$

Review: The flux across a plane loop

Example

Evaluate the flux of $\mathbf{F}=\langle-y, x, 0\rangle$ along the loop
$\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$ for $t \in[0,2 \pi]$.
Solution: Evaluate \mathbf{F} along the curve: $\mathbf{F}(t)=\langle-\sin (t), \cos (t), 0\rangle$.
Now compute the derivative vector $\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle$.
Now compute the normal vector $\mathbf{n}(t)=\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle$, that is, $\mathbf{n}(t)=\langle\cos (t), \sin (t), 0\rangle$. Evaluate the flux integral in components,

$$
\begin{gather*}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t \\
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}[-\sin (t) \cos (t)-\cos (t)(-\sin (t))] d t \\
\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{0}^{2 \pi} 0 d t \Rightarrow \oint_{C} \mathbf{F} \cdot \mathbf{u} d s=0
\end{gather*}
$$

Green's Theorem on a plane. (Sect. 16.4)

- Review: Line integrals and flux integrals.
- Green's Theorem on a plane.
- Circulation-tangential form.
- Flux-normal form.
- Tangential and normal forms equivalence.

Green's Theorem on a plane

Theorem (Circulation-tangential form)

The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{u}$ ds of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ along a loop C enclosing a region $R \in \mathbb{R}^{2}$ and given by the function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ and with unit tangent vector \mathbf{u}, satisfies that

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) x^{\prime}(t)+F_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y
$$

Equivalently,
$\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.

Green's Theorem on a plane

Example

Verify Green's Theorem tangential form for the field $\mathbf{F}=\langle-y, x\rangle$ and the loop $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$ for $t \in[0,2 \pi]$.
Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=2 \pi$.
Now we compute the double integral $I=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$ and we verify that we get the same result, 2π.

$$
\begin{gathered}
I=\iint_{R}[1-(-1)] d x d y=2 \iint_{R} d x d y=2 \int_{0}^{2 \pi} \int_{0}^{1} r d r d \theta \\
I=2(2 \pi)\left(\left.\frac{r^{2}}{2}\right|_{0} ^{1}\right) \Rightarrow \quad I=2 \pi
\end{gathered}
$$

We verified that $\oint_{C} \mathbf{F} \cdot \mathbf{u} d s=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y=2 \pi$.

- Review: Line integrals and flux integrals.
- Green's Theorem on a plane.
- Circulation-tangential form.
- Flux-normal form.
- Tangential and normal forms equivalence.

Green's Theorem on a plane

Theorem (Flux-normal form)
The counterclockwise flux integral $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$ of the field
$\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ along a loop C enclosing a region $R \in \mathbb{R}^{2}$ and given by the function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ and with unit normal vector \mathbf{n}, satisfies that

$$
\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y
$$

Equivalently,
$\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y$.

Green's Theorem on a plane

Example

Verify Green's Theorem normal form for the field $\mathbf{F}=\langle-y, x\rangle$ and the loop $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=0$.
Now we compute the double integral $I=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y$ and we verify that we get the same result, 0 .

$$
I=\iint_{R}\left[\partial_{x}(-y)+\partial_{y}(x)\right] d x d y=\iint_{R} 0 d x d y=0 .
$$

We verified that $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=0$.

Green's Theorem on a plane

Example

Verify Green's Theorem normal form for the field $\mathbf{F}=\langle 2 x,-3 y\rangle$ and the loop $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi], a>0$.

Solution: We start with the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t
$$

It is simple to see that $\mathbf{F}(t)=\langle 2 a \cos (t),-3 a \sin (t)\rangle$,
and also that $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle$.
Therefore, $\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[2 a^{2} \cos ^{2}(t)-3 a^{2} \sin ^{2}(t)\right] d t$,

$$
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[2 a^{2} \frac{1}{2}(1+\cos (2 t))-3 a^{2} \frac{1}{2}(1-\cos (2 t))\right] d t .
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we conclude $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=-\pi a^{2}$.

Green's Theorem on a plane

Example

Verify Green's Theorem normal form for the field $\mathbf{F}=\langle 2 x,-3 y\rangle$ and the loop $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi], a>0$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=-\pi a^{2}$.
Now we compute the double integral $I=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y$.

$$
\begin{gathered}
I=\iint_{R}\left[\partial_{x}(2 x)+\partial_{y}(-3 y)\right] d x d y=\iint_{R}(2-3) d x d y . \\
I=-\iint_{R} d x d y=-\int_{0}^{2 \pi} \int_{0}^{a} r d r d \theta=-2 \pi\left(\left.\frac{r^{2}}{2}\right|_{0} ^{a}\right)=-\pi a^{2} .
\end{gathered}
$$

Hence, $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y=-\pi a^{2}$.

Green's Theorem on a plane. (Sect. 16.4)

- Review: Line integrals and flux integrals.
- Green's Theorem on a plane.
- Circulation-tangential form.
- Flux-normal form.
- Tangential and normal forms equivalence.

Tangential and normal forms equivalence
Theorem
The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\hat{\mathbf{F}}=\left\langle\hat{F}_{x}, \hat{F}_{y}\right\rangle$ says

$$
\int_{t_{0}}^{t_{1}}\left[\hat{F}_{x}(t) x^{\prime}(t)+\hat{F}_{y}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} \hat{F}_{y}-\partial_{y} \hat{F}_{x}\right) d x d y
$$

If $\hat{\boldsymbol{F}}=\left\langle\hat{F}_{x}, \hat{F}_{y}\right\rangle$ and $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ are related by $\hat{F}_{x}=-F_{y}$ and $\hat{F}_{y}=F_{x}$, then the equation above for $\hat{\mathbf{F}}$ written in terms of \mathbf{F} is
$\int_{t_{0}}^{t_{1}}\left[-F_{y}(t) x^{\prime}(t)+F_{x}(t) y^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{x}-\partial_{y}\left(-F_{y}\right)\right) d x d y$,
so, $\int_{t_{0}}^{t_{1}}\left[F_{x}(t) y^{\prime}(t)-F_{y}(t) x^{\prime}(t)\right] d t=\iint_{R}\left(\partial_{x} F_{x}+\partial_{y} F_{y}\right) d x d y$,
which is Green's Theorem in normal form for \mathbf{F}. The converse implication is proved in the same way.

Using Green's Theorem

Example

Use Green's Theorem to find the counterclockwise circulation of the field $\mathbf{F}=\left\langle\left(y^{2}-x^{2}\right),\left(x^{2}+y^{2}\right)\right\rangle$ along the curve C that is the triangle bounded by $y=0, x=3$ and $y=x$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}(2 x-2 y) d x d y=\int_{0}^{3} \int_{0}^{x}(2 x-2 y) d y d x \\
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{3}\left[2 x\left(\left.y\right|_{0} ^{x}\right)-\left(\left.y^{2}\right|_{0} ^{x}\right)\right] d x=\int_{0}^{3}\left(2 x^{2}-x^{2}\right) d x \\
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{3} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{3} \Rightarrow \oint_{C} \mathbf{F} \cdot d \mathbf{r}=9
\end{gathered}
$$

