
Green’s Theorem on a plane. (Sect. 16.4)

I Review: Line integrals and flux integrals.
I Green’s Theorem on a plane.

I Circulation-tangential form.
I Flux-normal form.

I Tangential and normal forms equivalence.

Review: The line integral of a vector field along a curve

Definition
The line integral of a vector-valued function F : D ⊂ Rn → Rn,
with n = 2, 3, along the curve r : [t0, t1] ⊂ R → D ⊂ R3, with arc
length function s, is given by∫ s1

s0

F · u ds =

∫ t1

t0

F(t) · r′(t) dt,

where u =
r′

|r′|
, and s0 = s(t0), s1 = s(t1).

Example
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Remark: Since F = 〈Fx ,Fy 〉 and
r(t) = 〈x(t), y(t)〉, in components,∫ t1

t0

F(t) · r′(t) dt

=

∫ t1

t0

[
Fx(t)x

′(t) + Fy (t)y ′(t)
]
dt.



Review: The line integral of a vector field along a curve

Example

Evaluate the line integral of F = 〈−y , x〉 along the loop
r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Evaluate F along the curve: F(t) = 〈− sin(t), cos(t)〉.
Now compute the derivative vector r′(t) = 〈− sin(t), cos(t)〉.
Then evaluate the line integral in components,∮

C

F · u ds =

∫ t1

t0

[
Fx(t)x

′(t) + Fy (t)y ′(t)
]
dt,

∮
C

F · u ds =

∫ 2π

0

[
(− sin(t))(− sin(t)) + cos(t) cos(t)

]
dt,

∮
C

F · u ds =

∫ 2π

0

[
sin2(t) + cos2(t)

]
dt ⇒

∮
C

F · u ds = 2π.

C

Review: The flux across a plane loop

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example
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Remark: Since F = 〈Fx ,Fy , 0〉,
r(t) = 〈x(t), y(t), 0〉, ds = |r′(t)| dt, and

n =
1

|r′|
〈y ′(t),−x ′(t), 0〉, in components,

∮
C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt.



Review: The flux across a plane loop

Example

Evaluate the flux of F = 〈−y , x , 0〉 along the loop
r(t) = 〈cos(t), sin(t), 0〉 for t ∈ [0, 2π].

Solution: Evaluate F along the curve: F(t) = 〈− sin(t), cos(t), 0〉.
Now compute the derivative vector r′(t) = 〈− sin(t), cos(t), 0〉.
Now compute the normal vector n(t) = 〈y ′(t),−x ′(t), 0〉, that is,
n(t) = 〈cos(t), sin(t), 0〉. Evaluate the flux integral in components,∮

C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt,

∮
C

F · n ds =

∫ 2π

0

[
− sin(t) cos(t)− cos(t)(− sin(t))

]
dt,∮

C

F · u ds =

∫ 2π

0
0 dt ⇒

∮
C

F · u ds = 0. C
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Green’s Theorem on a plane

Theorem (Circulation-tangential form)

The counterclockwise line integral

∮
C

F · u ds of the field

F = 〈Fx ,Fy 〉 along a loop C enclosing a region R ∈ R2 and given
by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] and with unit
tangent vector u, satisfies that∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .
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Equivalently,∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

Green’s Theorem on a plane

Example

Verify Green’s Theorem tangential form for the field F = 〈−y , x〉
and the loop r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Recall: We found that

∮
C

F · u ds = 2π.

Now we compute the double integral I =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy

and we verify that we get the same result, 2π.

I =

∫∫
R

[
1− (−1)

]
dx dy = 2

∫∫
R

dx dy = 2

∫ 2π

0

∫ 1

0
r dr dθ

I = 2(2π)
( r2

2

∣∣∣1
0

)
⇒ I = 2π.

We verified that

∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy = 2π. C
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Green’s Theorem on a plane

Theorem (Flux-normal form)

The counterclockwise flux integral

∮
C

F · n ds of the field

F = 〈Fx ,Fy 〉 along a loop C enclosing a region R ∈ R2 and given
by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] and with unit
normal vector n, satisfies that∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

R
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Equivalently,∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .



Green’s Theorem on a plane

Example

Verify Green’s Theorem normal form for the field F = 〈−y , x〉 and
the loop r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Recall: We found that

∮
C

F · n ds = 0.

Now we compute the double integral I =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy

and we verify that we get the same result, 0.

I =

∫∫
R

[
∂x(−y) + ∂y (x)

]
dx dy =

∫∫
R

0 dx dy = 0.

We verified that

∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy = 0. C

Green’s Theorem on a plane

Example

Verify Green’s Theorem normal form for the field F = 〈2x ,−3y〉
and the loop r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π], a > 0.

Solution: We start with the line integral∮
C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt.

It is simple to see that F(t) = 〈2a cos(t),−3a sin(t)〉,
and also that r′(t) = 〈−a sin(t), a cos(t)〉.

Therefore,

∮
C

F · n ds =

∫ 2π

0

[
2a2 cos2(t)− 3a2 sin2(t)

]
dt,∮

C

F · n ds =

∫ 2π

0

[
2a2 1

2

(
1 + cos(2t)

)
− 3a2 1

2

(
1− cos(2t)

)]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we conclude

∮
C

F · n ds = −πa2.



Green’s Theorem on a plane

Example

Verify Green’s Theorem normal form for the field F = 〈2x ,−3y〉
and the loop r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π], a > 0.

Solution: Recall:

∮
C

F · n ds = −πa2.

Now we compute the double integral I =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

I =

∫∫
R

[
∂x(2x) + ∂y (−3y)

]
dx dy =

∫∫
R

(2− 3) dx dy .

I = −
∫∫

R

dx dy = −
∫ 2π

0

∫ a

0
r dr dθ = −2π

( r2

2

∣∣∣a
0

)
= −πa2.

Hence,

∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy = −πa2. C
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Tangential and normal forms equivalence

Theorem
The Green Theorem in tangential form is equivalent to the Green
Theorem in normal form.

Proof: Green’s Theorem in tangential form for F̂ = 〈F̂x , F̂y 〉 says∫ t1

t0

[
F̂x(t) x ′(t) + F̂y (t) y ′(t)

]
dt =

∫∫
R

(
∂x F̂y − ∂y F̂x

)
dx dy .

If F̂ = 〈F̂x , F̂y 〉 and F = 〈Fx ,Fy 〉 are related by F̂x = −Fy and
F̂y = Fx , then the equation above for F̂ written in terms of F is∫ t1

t0

[
−Fy (t) x ′(t) + Fx(t) y ′(t)

]
dt =

∫∫
R

(
∂xFx − ∂y (−Fy )

)
dx dy ,

so,

∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy ,

which is Green’s Theorem in normal form for F. The converse
implication is proved in the same way.

Using Green’s Theorem

Example

Use Green’s Theorem to find the counterclockwise circulation of
the field F = 〈(y2 − x2), (x2 + y2)〉 along the curve C that is the
triangle bounded by y = 0, x = 3 and y = x .

Solution: Recall:

∮
C

F · dr =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

∮
C

F · dr =

∫∫
R

(2x − 2y) dx dy =

∫ 3

0

∫ x

0
(2x − 2y) dy dx ,

∮
C

F · dr =

∫ 3

0

[
2x

(
y
∣∣∣x
0

)
−

(
y2

∣∣∣x
0

)]
dx =

∫ 3

0

(
2x2 − x2

)
dx ,

∮
C

F · dr =

∫ 3

0
x2 dx =

x3

3

∣∣∣3
0

⇒
∮

C

F · dr = 9. C


