
Conservative fields and potential functions. (Sect. 16.3)

I Review: Line integral of a vector field.

I Gradient fields.

I Conservative fields.

I Equivalence of Gradient and Conservative fields.

I The line integral conservative fields.

I Finding the potential of a gradient field.

I Comments on exact differential forms.

The line integral of a vector field along a curve

Recall: The line integral of F : Rn → Rn, with n = 2, 3, along
r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

F · dr =

∫ s1

s0

F(̂r(s)) · r̂′(s) ds =

∫ t1

t0

F(r(t)) · r′(t) dt,

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1.

Example

F

y

x

r’

Remark: It is common the notation

r̂′ = T,

since T is tangent to the curve and
unit, since s is the curve arc-length
parameter.



Work done by a force on a particle

Definition
In the case that F is a force on a particle with position function r
then the line integral

W =

∫
C

F · dr,

is called the work done by the force on the particle.

Example

F

y

x

r’

A projectile of mass m moving on the
surface of Earth.

I The movement takes place on a
plane, and F = 〈0,−mg〉.

I W 6 0 in the first half of the
trajectory, and W > 0 on the
second half.
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Gradient fields

Definition
A vector field F : D ⊂ Rn → Rn, with n = 2, 3, is called a gradient
field iff there exists a scalar function f : D ⊂ Rn → R, called
potential function, such that

F = ∇f .

Example

F

y

x

r’

A projectile of mass m moving on the
surface of Earth.

I The movement takes place on a
plane, and F = 〈0,−mg〉.

I F = ∇f , with f = −mgy .

Gradient fields

Example

Show that the vector field F =
1

(x2
1 + x2

2 + x2
3 )3/2

〈x1, x2, x3〉 is a

gradient field and find the potential function.

Solution: The field F = 〈F1,F2,F3〉 is a gradient field iff there
exists a potential function f such that F = ∇f , that is,

F1 = ∂x1f , F2 = ∂x2f , F3 = ∂x3f .

Since

xi

(x2
1 + x2

2 + x2
3 )3/2

= −∂xi

[(
x2
1 + x2

2 + x2
3

)−1/2
]
, i = 1, 2, 3,

then we conclude that F = ∇f , with f = − 1√
x2
1 + x2

2 + x2
3

. C
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The line integral of conservative fields

Definition
A vector field F : D ⊂ Rn → Rn, with n = 2, 3, is called a

conservative field iff the line integral

∫
C

F · dr depend only on the

initial and end points of the path.

Remark: For conservative fields is useful the following notation:
If the path C ∈ Rn, with n = 2, 3, has end points r0, r1, then
denote the line integral of a conservative field F along C as follows∫

C

F · dr =

∫ r1

r0

F · dr.

Remarks:

I This notation emphasizes the end points, not the path.

I This notation is useful only for conservative fields.

I A field F is conservative iff

∫
C

F · dr is path independent.
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Equivalence of Gradient and Conservative fields

Theorem (Equivalence of gradient and conservative fields)

I A smooth vector field F : D ⊂ Rn → Rn, with n = 2, 3,
defined on a simply connected domain D ⊂ Rn, is a gradient
field iff it is a conservative field.

I Furthermore, if F = ∇f and the curve C ⊂ D starts at r0 and
ends at r1, then holds∫ r1

r0

∇f · dr = f (r1)− f (r0).

Remarks:

I This is a Fundamental Theorem of
Calculus for vector fields.

I A set is simply connected iff it
consists of one piece and it
contains no holes.

D

connected

Simply connected

Not simply

y

x

D



Equivalence of Gradient and Conservative fields

Recall: A field F on a simply connected domain is a gradient field
iff it is a conservative field. Furthermore,∫ r1

r0

∇f · dr = f (r1)− f (r0).

Proof: Only (⇒).∫
C

F · dr =

∫ r1

r0

∇f · dr =

∫ t1

t0

(∇f )
∣∣∣
r(t)

· r′(t) dt,

where r(t0) = r0 and r(t1) = r1. Therefore,∫ r1

r0

F · dr =

∫ t1

t0

d

dt

[
f (r(t)

]
dt = f (r(t1))− f (r(t0)).

We conclude that

∫ r1

r0

∇f · dr = f (r1)− f (r0).

(The statement (⇐) is more complicated to prove.)
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The line integral of conservative fields

Example

Evaluate I =

∫ (1,2,3)

(0,0,0)
2x dx + 2y dy + 2z dz .

Solution: I is a line integral for a field in R3, since

I =

∫ (1,2,3)

(0,0,0)
〈2x , 2y , 2z〉 · 〈dx , dy , dz〉.

Introduce F = 〈2x , 2y , 2z〉, r0 = (0, 0, 0) and r1 = (1, 2, 3), then

I =

∫ r1

r0

F · dr. The field F is a gradient field, since F = ∇f with

potential f (x , y , z) = x2 + y2 + z2. That is f (r) = |r|2. Therefore,

I =

∫ r1

r0

∇f · dr = f (r1)− f (r0) = |r1|2 − |r0|2 = (1 + 4 + 9).

We conclude that I = 14. C

The line integral of conservative fields (Along a path.)

Example

Evaluate I =

∫ (1,2,3)

(0,0,0)
2x dx + 2y dy + 2z dz along a straight line.

Solution: Consider the path C given by r(t) = 〈1, 2, 3〉 t.
Then r(0) = 〈0, 0, 0〉, and r(1) = 〈1, 2, 3〉. We now evaluate
F = 〈2x , 2y , 2z〉 along r(t), that is, F(t) = 〈2t, 4t, 6t〉. Therefore,

I =

∫ t1

t0

F(t) · r′(t) dt =

∫ 1

0
〈2t, 4t, 6t〉 · 〈1, 2, 3〉 dt

I =

∫ 1

0
(2t + 8t + 18t) dt =

∫ 1

0
28t dt = 28

( t2

2

∣∣∣1
0

)
.

We conclude that I = 14. C
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Finding the potential of a gradient field

Theorem (Characterization of gradient fields)

A smooth field F = 〈F1,F2,F3〉 on a simply connected domain
D ⊂ R3 is a gradient field iff hold

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

Proof: Only (⇒).
Since the vector field F is a gradient field, there exists a scalar field
f such that F = ∇f . Then the equations above are satisfied, since
for i , j = 1, 2, 3 hold

Fi = ∂i f ⇒ ∂iFj = ∂i∂j f = ∂j∂i f = ∂jFi .

(The statement (⇐) is more complicated to prove.)



Finding the potential of a gradient field

Example

Show that the field F = 〈2xy , (x2 − z2),−2yz〉 is a gradient field.

Solution: We need to show that the equations in the Theorem
above hold, that is

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

with x1 = x , x2 = y , and x3 = z . This is the case, since

∂1F2 = 2x , ∂2F1 = 2x ,

∂2F3 = −2z , ∂3F2 = −2z ,

∂3F1 = 0, ∂1F3 = 0.

C

Finding the potential of a gradient field

Example

Find the potential of the gradient field F = 〈2xy , (x2 − z2),−2yz〉.

Solution: We know there exists a scalar function f solution of

F = ∇f ⇔ ∂x f = 2xy , ∂y f = x2 − z2, ∂z f = −2yz .

f =

∫
2xy dx + g(y , z) ⇒ f = x2y + g(y , z).

∂y f = x2 + ∂yg(y , z) = x2 − z2 ⇒ ∂yg(y , z) = −z2.

g(y , z) = −
∫

z2 dy+h(z) = −z2y +h(z) ⇒ f = x2y−z2y +h(z).

∂z f = −2zy+∂zh(z) = −2yz ⇒ ∂zh(z) = 0 ⇒ f = (x2−z2)y+c0.

C
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Comments on exact differential forms

Notation: We call a differential form to the integrand in a line
integral for a smooth field F, that is,

F · dr = 〈Fx ,Fy ,Fz〉 · 〈dx , dy , dz〉 = Fxdx + Fydy + Fzdz .

Remark: A differential form is a quantity that can be integrated
along a path.

Definition
A differential form F · dr = Fxdx + Fydy + Fzdz is called exact iff
there exists a scalar function f such that

Fxdx + Fydy + Fzdz = ∂x f dx + ∂y f dy + ∂z f dz .

Remarks:

I A differential form F · dr is exact iff F = ∇f .

I In this context an exact differential form is nothing else than
another name for a gradient field.



Comments on exact differential forms

Example

Show that the differential form given below is exact, where
F · dr = 2xy dx + (x2 − z2) dy − 2yz dz .

Solution: We need to do the same calculation we did above:
Writing F · dr = F1 dx1 + F2 dx2 + F3 dx3, show that

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

with x1 = x , x2 = y , and x3 = z . We showed that this is the case,
since

∂1F2 = 2x , ∂2F1 = 2x ,

∂2F3 = −2z , ∂3F2 = −2z ,

∂3F1 = 0, ∂1F3 = 0.

So, there exists f such that F · dr = ∇f · dr. C


