- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

The line integral of a vector field along a curve

Recall: The line integral of $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, along $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{s_{0}}^{s_{1}} \mathbf{F}(\hat{\mathbf{r}}(s)) \cdot \hat{\mathbf{r}}^{\prime}(s) d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\hat{\mathbf{r}}(s)$ is the arc length parametrization of the function \mathbf{r}, and $s\left(t_{0}\right)=s_{0}, s\left(t_{1}\right)=s_{1}$ are the arc lengths at the points t_{0}, t_{1}.

Example

Remark: It is common the notation

$$
\hat{\mathbf{r}}^{\prime}=\mathbf{T},
$$

since \mathbf{T} is tangent to the curve and unit, since s is the curve arc-length parameter.

Work done by a force on a particle

Definition

In the case that \mathbf{F} is a force on a particle with position function \mathbf{r} then the line integral

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

is called the work done by the force on the particle.

Example

A projectile of mass m moving on the surface of Earth.

- The movement takes place on a plane, and $\mathbf{F}=\langle 0,-m g\rangle$.
- $W \leqslant 0$ in the first half of the trajectory, and $W \geqslant 0$ on the second half.

Conservative fields and potential functions. (Sect. 16.3)

- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

Gradient fields

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is called a gradient field iff there exists a scalar function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, called potential function, such that

$$
\mathbf{F}=\nabla f
$$

Example

A projectile of mass m moving on the surface of Earth.

- The movement takes place on a plane, and $\mathbf{F}=\langle 0,-m g\rangle$.
- $\mathbf{F}=\nabla f$, with $f=-m g y$.

Gradient fields

Example

Show that the vector field $\mathbf{F}=\frac{1}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{3 / 2}}\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ is a gradient field and find the potential function.

Solution: The field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is a gradient field iff there exists a potential function f such that $\mathbf{F}=\nabla f$, that is,

$$
F_{1}=\partial_{x_{1}} f, \quad F_{2}=\partial_{x_{2}} f, \quad F_{3}=\partial_{x_{3}} f
$$

Since

$$
\frac{x_{i}}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{3 / 2}}=-\partial_{x_{i}}\left[\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-1 / 2}\right], \quad i=1,2,3,
$$

then we conclude that $\mathbf{F}=\nabla f$, with $f=-\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$.

- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

The line integral of conservative fields

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is called a conservative field iff the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ depend only on the initial and end points of the path.

Remark: For conservative fields is useful the following notation: If the path $C \in \mathbb{R}^{n}$, with $n=2,3$, has end points $\mathbf{r}_{0}, \mathbf{r}_{1}$, then denote the line integral of a conservative field \mathbf{F} along C as follows

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d \mathbf{r} .
$$

Remarks:

- This notation emphasizes the end points, not the path.
- This notation is useful only for conservative fields.
- A field \mathbf{F} is conservative iff $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path independent.
- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

Equivalence of Gradient and Conservative fields

Theorem (Equivalence of gradient and conservative fields)

- A smooth vector field $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, defined on a simply connected domain $D \subset \mathbb{R}^{n}$, is a gradient field iff it is a conservative field.
- Furthermore, if $\mathbf{F}=\nabla f$ and the curve $C \subset D$ starts at \mathbf{r}_{0} and ends at \mathbf{r}_{1}, then holds

$$
\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}_{1}\right)-f\left(\mathbf{r}_{0}\right) .
$$

Remarks:

- This is a Fundamental Theorem of Calculus for vector fields.
- A set is simply connected iff it consists of one piece and it contains no holes.

Equivalence of Gradient and Conservative fields

Recall: A field \mathbf{F} on a simply connected domain is a gradient field iff it is a conservative field. Furthermore,

$$
\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}_{1}\right)-f\left(\mathbf{r}_{0}\right) .
$$

Proof: Only (\Rightarrow).

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \nabla f \cdot d \mathbf{r}=\left.\int_{t_{0}}^{t_{1}}(\nabla f)\right|_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{r}\left(t_{0}\right)=\mathbf{r}_{0}$ and $\mathbf{r}\left(t_{1}\right)=\mathbf{r}_{1}$. Therefore,

$$
\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \frac{d}{d t}\left[f(\mathbf{r}(t)] d t=f\left(\mathbf{r}\left(t_{1}\right)\right)-f\left(\mathbf{r}\left(t_{0}\right)\right) .\right.
$$

We conclude that $\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}_{1}\right)-f\left(\mathbf{r}_{0}\right)$.
(The statement (\Leftarrow) is more complicated to prove.)

Conservative fields and potential functions. (Sect. 16.3)

- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

The line integral of conservative fields
Example
Evaluate $I=\int_{(0,0,0)}^{(1,2,3)} 2 x d x+2 y d y+2 z d z$
Solution: I is a line integral for a field in \mathbb{R}^{3}, since

$$
I=\int_{(0,0,0)}^{(1,2,3)}\langle 2 x, 2 y, 2 z\rangle \cdot\langle d x, d y, d z\rangle
$$

Introduce $\mathbf{F}=\langle 2 x, 2 y, 2 z\rangle, \mathbf{r}_{0}=(0,0,0)$ and $\mathbf{r}_{1}=(1,2,3)$, then $I=\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d \mathbf{r}$. The field \mathbf{F} is a gradient field, since $\mathbf{F}=\nabla f$ with potential $f(x, y, z)=x^{2}+y^{2}+z^{2}$. That is $f(\mathbf{r})=|\mathbf{r}|^{2}$. Therefore,

$$
I=\int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}_{1}\right)-f\left(\mathbf{r}_{0}\right)=\left|\mathbf{r}_{1}\right|^{2}-\left|\mathbf{r}_{0}\right|^{2}=(1+4+9)
$$

We conclude that $I=14$.

The line integral of conservative fields (Along a path.)

Example

Evaluate $I=\int_{(0,0,0)}^{(1,2,3)} 2 x d x+2 y d y+2 z d z$ along a straight line.
Solution: Consider the path C given by $\mathbf{r}(t)=\langle 1,2,3\rangle t$.
Then $\mathbf{r}(0)=\langle 0,0,0\rangle$, and $\mathbf{r}(1)=\langle 1,2,3\rangle$. We now evaluate $\mathbf{F}=\langle 2 x, 2 y, 2 z\rangle$ along $\mathbf{r}(t)$, that is, $\mathbf{F}(t)=\langle 2 t, 4 t, 6 t\rangle$. Therefore,

$$
\begin{gathered}
I=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\langle 2 t, 4 t, 6 t\rangle \cdot\langle 1,2,3\rangle d t \\
I=\int_{0}^{1}(2 t+8 t+18 t) d t=\int_{0}^{1} 28 t d t=28\left(\left.\frac{t^{2}}{2}\right|_{0} ^{1}\right)
\end{gathered}
$$

- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

Finding the potential of a gradient field

Theorem (Characterization of gradient fields)
A smooth field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ on a simply connected domain
$D \subset \mathbb{R}^{3}$ is a gradient field iff hold

$$
\partial_{2} F_{3}=\partial_{3} F_{2}, \quad \partial_{3} F_{1}=\partial_{1} F_{3}, \quad \partial_{1} F_{2}=\partial_{2} F_{1}
$$

Proof: Only (\Rightarrow).
Since the vector field \mathbf{F} is a gradient field, there exists a scalar field f such that $\mathbf{F}=\nabla f$. Then the equations above are satisfied, since for $i, j=1,2,3$ hold

$$
F_{i}=\partial_{i} f \quad \Rightarrow \quad \partial_{i} F_{j}=\partial_{i} \partial_{j} f=\partial_{j} \partial_{i} f=\partial_{j} F_{i}
$$

(The statement (\Leftarrow) is more complicated to prove.)

Finding the potential of a gradient field

Example

Show that the field $\mathbf{F}=\left\langle 2 x y,\left(x^{2}-z^{2}\right),-2 y z\right\rangle$ is a gradient field.

Solution: We need to show that the equations in the Theorem above hold, that is

$$
\partial_{2} F_{3}=\partial_{3} F_{2}, \quad \partial_{3} F_{1}=\partial_{1} F_{3}, \quad \partial_{1} F_{2}=\partial_{2} F_{1}
$$

with $x_{1}=x, x_{2}=y$, and $x_{3}=z$. This is the case, since

$$
\begin{aligned}
\partial_{1} F_{2}=2 x, & \partial_{2} F_{1}=2 x, \\
\partial_{2} F_{3}=-2 z, & \partial_{3} F_{2}=-2 z, \\
\partial_{3} F_{1}=0, & \partial_{1} F_{3}=0 .
\end{aligned}
$$

Finding the potential of a gradient field

Example

Find the potential of the gradient field $\mathbf{F}=\left\langle 2 x y,\left(x^{2}-z^{2}\right),-2 y z\right\rangle$.
Solution: We know there exists a scalar function f solution of

$$
\begin{gathered}
\mathbf{F}=\nabla f \quad \Leftrightarrow \quad \partial_{x} f=2 x y, \quad \partial_{y} f=x^{2}-z^{2}, \quad \partial_{z} f=-2 y z \\
f=\int 2 x y d x+g(y, z) \Rightarrow f=x^{2} y+g(y, z) \\
\partial_{y} f=x^{2}+\partial_{y} g(y, z)=x^{2}-z^{2} \Rightarrow \partial_{y} g(y, z)=-z^{2} . \\
g(y, z)=-\int z^{2} d y+h(z)=-z^{2} y+h(z) \Rightarrow f=x^{2} y-z^{2} y+h(z) . \\
\partial_{z} f=-2 z y+\partial_{z} h(z)=-2 y z \Rightarrow \partial_{z} h(z)=0 \Rightarrow f=\left(x^{2}-z^{2}\right) y+c_{0} .
\end{gathered}
$$

- Review: Line integral of a vector field.
- Gradient fields.
- Conservative fields.
- Equivalence of Gradient and Conservative fields.
- The line integral conservative fields.
- Finding the potential of a gradient field.
- Comments on exact differential forms.

Comments on exact differential forms

Notation: We call a differential form to the integrand in a line integral for a smooth field \mathbf{F}, that is,

$$
\mathbf{F} \cdot d \mathbf{r}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle \cdot\langle d x, d y, d z\rangle=F_{x} d x+F_{y} d y+F_{z} d z
$$

Remark: A differential form is a quantity that can be integrated along a path.

Definition

A differential form $\mathbf{F} \cdot d \mathbf{r}=F_{x} d x+F_{y} d y+F_{z} d z$ is called exact iff there exists a scalar function f such that

$$
F_{x} d x+F_{y} d y+F_{z} d z=\partial_{x} f d x+\partial_{y} f d y+\partial_{z} f d z
$$

Remarks:

- A differential form $\mathbf{F} \cdot d \mathbf{r}$ is exact iff $\mathbf{F}=\nabla f$.
- In this context an exact differential form is nothing else than another name for a gradient field.

Comments on exact differential forms

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d \mathbf{r}=2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z$.

Solution: We need to do the same calculation we did above:
Writing $\mathbf{F} \cdot d \mathbf{r}=F_{1} d x_{1}+F_{2} d x_{2}+F_{3} d x_{3}$, show that

$$
\partial_{2} F_{3}=\partial_{3} F_{2}, \quad \partial_{3} F_{1}=\partial_{1} F_{3}, \quad \partial_{1} F_{2}=\partial_{2} F_{1} .
$$

with $x_{1}=x, x_{2}=y$, and $x_{3}=z$. We showed that this is the case, since

$$
\begin{aligned}
\partial_{1} F_{2}=2 x, & \partial_{2} F_{1}=2 x, \\
\partial_{2} F_{3}=-2 z, & \partial_{3} F_{2}=-2 z, \\
\partial_{3} F_{1}=0, & \partial_{1} F_{3}=0 .
\end{aligned}
$$

So, there exists f such that $\mathbf{F} \cdot d \mathbf{r}=\nabla f \cdot d \mathbf{r}$.

