
Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.

Vector fields on a plane and in space

Definition
A vector field on a plane or in space is a vector-valued function
F : D ⊂ Rn → Rn, with n = 2, 3, respectively.

Examples from physics:

I Electric and magnetic fields.

I The gravitational field of the Earth.

I The velocity field in a fluid or gas.

I The variation of temperature in a
room. (Gradient field.)

Magnetic field of a small magnet.
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The gradient field of a scalar-valued function

Remark:
I Given a scalar-valued function f : D ⊂ Rn → R, with n = 2, 3,

its gradient vector, ∇f = 〈∂x f , ∂y f 〉 or ∇f = 〈∂x f , ∂y f , ∂z f 〉,
respectively, is a vector field in a plane or in space.

Example

Find and sketch a graph of the gradient field of the function
f (x , y) = x2 + y2.

Solution: We know the graph of f is a paraboloid. The gradient
field is ∇f = 〈2x , 2y〉.

u

2f(x,y) = x  + y 2z

x

y

D  f

y

x

  f



Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.

The line integral of a vector field along a curve

Definition
The line integral of a vector-valued function F : D ⊂ Rn → Rn,
with n = 2, 3, along the curve associated with the function
r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

F · dr =

∫ s1

s0

F(̂r(s)) · r̂′(s) ds

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1.

Example

F

y

x

r’

Remark: It is common the notation

r̂′ = T,
since T is tangent to the curve and
unit, since s is the curve arc-length
parameter.



Line integrals in space

Theorem (General parametrization formula)

The line integral of a continuous function F : D ⊂ R3 → R3 along
a differentiable curve r : [t0, t1] ⊂ R → D ⊂ R3 can be written as∫ s1

s0

F(̂r(s)) · r̂′(s) ds =

∫ t1

t0

F(r(t)) · r′(t) dt,

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1.

Proof: Recall the curve arc-length function s(t) =

∫ t

t0

|r′(τ)| dτ .

Then ds = |r′(t)| dt. Also, r̂(s(t)) = r(t). And finally

r̂′(s) =
d r̂

ds
(s) =

dr

dt
(t)

dt

ds
=

r′(t)

|r′(t)|
⇒ r̂′(s) ds = r′(t) dt.

This substitution provides the equation in the Theorem.
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Work done by a force on a particle

Definition
If the vector valued function F : D ⊂ Rn → Rn, with n = 2, 3,
represents a force acting on a particle with position function
r : [t0, t1] ⊂ R → D ⊂ R3, then the line integral

W =

∫
C

F · dr,

is called the work done by the force on the particle.

Example

F

y

x

r’

A mass m projectile near the Earth surface.

I The movement takes place on a plane,
and F = 〈0,−mg〉.

I W 6 0 in the first half of the
trajectory, and W > 0 on the second
half.

Work done by a force on a particle

Example

Find the work done by the force F(x , y , z) = 〈(3x2 − 3x), 3z , 1〉 on
a particle moving along the curve with r(t) = 〈t, t2, t4〉, t ∈ [0, 1].

Solution:
First: Evaluate F along r. This is: F(t) = 〈(3t2 − 3t), 3t4, 1〉.

Second: Compute r′(t). This is: r′(t) = 〈1, 2t, 4t3〉.

Third: Integrate the dot product F(t) · r′(t).

W =

∫ 1

0

[
(3t2 − 3t) + (6t5) + (4t3)

]
dt

=
(
t3 − 3

2
t2 + t6 + t4

)∣∣∣1
0

= 1− 3

2
+ 1 + 1.

So, W = 3− 3

2
. We conclude: The work done is W =

3

2
. C
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The flow of a fluid along a curve

Definition
In the case that the vector field v : D ⊂ Rn → Rn, with n = 2, 3, is
the velocity field of a flow and r : [t0, t1] ⊂ R → D ⊂ R3 is any
smooth curve, then the line integral

F =

∫
C

v · dr,

is called a flow integral. If the curve is a closed loop, the flow
integral is called the circulation of the fluid around the loop.

Example

y

v

Viscous fluid in a pipe.z

x

I The flow of a viscous fluid in a
pipe is maximal along a line
through the center of the pipe.

I The flow vanishes on any curve
perpendicular to the section of the
pipe.



The flow of a fluid along a curve
Example

Find the circulation of a fluid with velocity field v = 〈−y , x〉 along
the closed loop given by r1 = 〈a cos(t), a sin(t)〉 for t ∈ [0, π], and
r2 = 〈t, 0〉 for t ∈ [−a, a].

Solution: The circulation is: F =

∫
C1

v · dr1 +

∫
C2

v · dr2.

2
x−a a

C1
y

C

The first term is given by:∫
C1

v · dr1 =

∫ π

0
v(t) · r′1(t) dt.

v(t) = 〈−a sin(t), a cos(t)〉,

r′1(t) = 〈−a sin(t), a cos(t)〉.

∫
C1

v · dr1 =

∫ π

0
a2

[
sin2(t) + cos2(t)

]
dt ⇒

∫
C1

v · dr1 = πa2.

The flow of a fluid along a curve

Example

Find the circulation of a fluid with velocity field v = 〈−y , x〉 along
the closed loop given by r1 = 〈a cos(t), a sin(t)〉 for t ∈ [0, π], and
r2 = 〈t, 0〉 for t ∈ [−a, a].

Solution: The circulation is: F =

∫
C1

v · dr1 +

∫
C2

v · dr2.

2
x−a a

C1
y

C

The second term is given by:∫
C2

v · dr2 =

∫ a

−a
v(t) · r′2(t) dt,

v(t) = 〈0, t〉, r′2(t) = 〈1, 0〉.

v(t) · r′2(t) = 0 ⇒
∫

C2

v · dr2 = 0.

Since
∫

C1
v · dr1 = πa2, we conclude: F = πa2. C
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The flux across a plane curve

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the curve outer unit normal vector in the plane {z = 0}.

Example

C

y

z

x
n { z = 0 }

Remarks:

I F is defined on {z = 0}.
I The loop C lies on {z = 0}.
I Simple formula for n? Yes.

n =
1

|r′|
〈y ′(t),−x ′(t), 0〉.



The flux across a plane curve

Theorem (Counterclockwise loops.)

The flux of a vector field F = 〈Fx(x , y),Fy (x , y), 0〉 along a closed,
counterclockwise plane loop r(t) = 〈x(t), y(t), 0〉 for t ∈ [t0, t1] is
given by ∮

C

F · n ds =

∫ t1

t0

[
Fx y ′(t)− Fy x ′(t)

]
dt.

Proof:

n = u x k

y

x

k

z

C { z = 0 }

u

Remarks: Since C is counterclockwise
traversed, n = u× k, where u = r′/|r′|.

u(t) =
1

|r′(t)|
〈x ′(t), y ′(t), 0〉, k = 〈0, 0, 1〉.

n =
1

|r′|

∣∣∣∣∣∣
i j k
x ′ y ′ 0
0 0 1

∣∣∣∣∣∣ ⇒ n =
1

|r′|
〈y ′(t),−x ′(t), 0〉.

The flux across a plane curve

Theorem (Counterclockwise loops.)

The flux of a vector field F = 〈Fx(x , y),Fy (x , y), 0〉 along a closed,
counterclockwise plane loop r(t) = 〈x(t), y(t), 0〉 for t ∈ [t0, t1] is
given by ∮

C

F · n ds =

∫ t1

t0

[
Fx y ′(t)− Fy x ′(t)

]
dt.

Proof: Recall: n =
1

|r′|
〈y ′(t),−x ′(t), 0〉.

∮
C

F · n ds =

∫ t1

t0

〈Fx ,Fy , 0〉 · 〈y ′(t),−x ′(t), 0〉 1

|r′(t)|
|r′(t)| dt

∮
C

F · n ds =

∫ t1

t0

[
Fx y ′(t)− Fy x ′(t)

]
dt.



The flux across a plane curve

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.

The flux across a plane curve

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C


