Integrals of vector fields. (Sect. 16.2)

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

Vector fields on a plane and in space

Definition

A vector field on a plane or in space is a vector-valued function
$\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, respectively.

Examples from physics:

- Electric and magnetic fields.
- The gravitational field of the Earth.
- The velocity field in a fluid or gas.
- The variation of temperature in a room. (Gradient field.)

Magnetic field of a small magnet.

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

The gradient field of a scalar-valued function

Remark:

- Given a scalar-valued function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3$, its gradient vector, $\nabla f=\left\langle\partial_{x} f, \partial_{y} f\right\rangle$ or $\nabla f=\left\langle\partial_{x} f, \partial_{y} f, \partial_{z} f\right\rangle$, respectively, is a vector field in a plane or in space.

Example

Find and sketch a graph of the gradient field of the function $f(x, y)=x^{2}+y^{2}$.

Solution: We know the graph of f is a paraboloid. The gradient field is $\nabla f=\langle 2 x, 2 y\rangle$.

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

The line integral of a vector field along a curve

Definition

The line integral of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, along the curve associated with the function $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{s_{0}}^{s_{1}} \mathbf{F}(\hat{\mathbf{r}}(s)) \cdot \hat{\mathbf{r}}^{\prime}(s) d s
$$

where $\hat{\mathbf{r}}(s)$ is the arc length parametrization of the function \mathbf{r}, and $s\left(t_{0}\right)=s_{0}, s\left(t_{1}\right)=s_{1}$ are the arc lengths at the points t_{0}, t_{1}.

Example

Remark: It is common the notation

$$
\hat{\mathbf{r}}^{\prime}=\mathbf{T},
$$

since \mathbf{T} is tangent to the curve and unit, since s is the curve arc-length parameter.

Line integrals in space

Theorem (General parametrization formula)
The line integral of a continuous function $\mathbf{F}: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a differentiable curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ can be written as

$$
\int_{s_{0}}^{s_{1}} \mathbf{F}(\hat{\mathbf{r}}(s)) \cdot \hat{\mathbf{r}}^{\prime}(s) d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\hat{\mathbf{r}}(s)$ is the arc length parametrization of the function \mathbf{r}, and $s\left(t_{0}\right)=s_{0}, s\left(t_{1}\right)=s_{1}$ are the arc lengths at the points t_{0}, t_{1}.

Proof: Recall the curve arc-length function $s(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.
Then $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$. Also, $\hat{\mathbf{r}}(s(t))=\mathbf{r}(t)$. And finally

$$
\hat{\mathbf{r}}^{\prime}(s)=\frac{d \hat{\mathbf{r}}}{d s}(s)=\frac{d \mathbf{r}}{d t}(t) \frac{d t}{d s}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \Rightarrow \hat{\mathbf{r}}^{\prime}(s) d s=\mathbf{r}^{\prime}(t) d t
$$

This substitution provides the equation in the Theorem.

Integrals of vector fields. (Sect. 16.2)

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

Work done by a force on a particle

Definition

If the vector valued function $\mathbf{F}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, represents a force acting on a particle with position function $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$, then the line integral

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

is called the work done by the force on the particle.

Example

A mass m projectile near the Earth surface.

- The movement takes place on a plane, and $\mathbf{F}=\langle 0,-m g\rangle$.
- $W \leqslant 0$ in the first half of the trajectory, and $W \geqslant 0$ on the second half.

Work done by a force on a particle

Example

Find the work done by the force $\mathbf{F}(x, y, z)=\left\langle\left(3 x^{2}-3 x\right), 3 z, 1\right\rangle$ on a particle moving along the curve with $\mathbf{r}(t)=\left\langle t, t^{2}, t^{4}\right\rangle, t \in[0,1]$.

Solution:

First: Evaluate \mathbf{F} along \mathbf{r}. This is: $\mathbf{F}(t)=\left\langle\left(3 t^{2}-3 t\right), 3 t^{4}, 1\right\rangle$.
Second: Compute $\mathbf{r}^{\prime}(t)$. This is: $\mathbf{r}^{\prime}(t)=\left\langle 1,2 t, 4 t^{3}\right\rangle$.
Third: Integrate the dot product $\mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t)$.

$$
\begin{aligned}
W & =\int_{0}^{1}\left[\left(3 t^{2}-3 t\right)+\left(6 t^{5}\right)+\left(4 t^{3}\right)\right] d t \\
& =\left.\left(t^{3}-\frac{3}{2} t^{2}+t^{6}+t^{4}\right)\right|_{0} ^{1}=1-\frac{3}{2}+1+1
\end{aligned}
$$

So, $W=3-\frac{3}{2}$. We conclude: The work done is $W=\frac{3}{2}$.

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

The flow of a fluid along a curve

Definition

In the case that the vector field $\mathbf{v}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is the velocity field of a flow and $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ is any smooth curve, then the line integral

$$
F=\int_{C} \mathbf{v} \cdot d \mathbf{r}
$$

is called a flow integral. If the curve is a closed loop, the flow integral is called the circulation of the fluid around the loop.

Example

- The flow of a viscous fluid in a pipe is maximal along a line through the center of the pipe.
- The flow vanishes on any curve perpendicular to the section of the pipe.

The flow of a fluid along a curve

Example

Find the circulation of a fluid with velocity field $\mathbf{v}=\langle-y, x\rangle$ along the closed loop given by $\mathbf{r}_{1}=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0, \pi]$, and $\mathbf{r}_{2}=\langle t, 0\rangle$ for $t \in[-a, a]$.
Solution: The circulation is: $F=\int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}+\int_{C_{2}} \mathbf{v} \cdot d \mathbf{r}_{2}$.
The first term is given by:

$$
\begin{gathered}
\int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}=\int_{0}^{\pi} \mathbf{v}(t) \cdot \mathbf{r}_{1}^{\prime}(t) d t \\
\mathbf{v}(t)=\langle-a \sin (t), a \cos (t)\rangle \\
\mathbf{r}_{1}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle
\end{gathered}
$$

$$
\int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}=\int_{0}^{\pi} a^{2}\left[\sin ^{2}(t)+\cos ^{2}(t)\right] d t \quad \Rightarrow \quad \int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}=\pi a^{2}
$$

The flow of a fluid along a curve

Example

Find the circulation of a fluid with velocity field $\mathbf{v}=\langle-y, x\rangle$ along the closed loop given by $\mathbf{r}_{1}=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0, \pi]$, and $\mathbf{r}_{2}=\langle t, 0\rangle$ for $t \in[-a, a]$.
Solution: The circulation is: $F=\int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}+\int_{C_{2}} \mathbf{v} \cdot d \mathbf{r}_{2}$.
The second term is given by:

$$
\begin{gather*}
\int_{C_{2}} \mathbf{v} \cdot d \mathbf{r}_{2}=\int_{-a}^{a} \mathbf{v}(t) \cdot \mathbf{r}_{2}^{\prime}(t) d t \\
\mathbf{v}(t)=\langle 0, t\rangle, \quad \mathbf{r}_{2}^{\prime}(t)=\langle 1,0\rangle \\
\mathbf{v}(t) \cdot \mathbf{r}_{2}^{\prime}(t)=0 \quad \Rightarrow \quad \int_{C_{2}} \mathbf{v} \cdot d \mathbf{r}_{2}=0 .
\end{gather*}
$$

Since $\int_{C_{1}} \mathbf{v} \cdot d \mathbf{r}_{1}=\pi a^{2}$, we conclude: $F=\pi a^{2}$.

- Vector fields on a plane and in space.
- The gradient field of a scalar-valued function.
- The line integral of a vector field along a curve.
- Work done by a force on a particle.
- The flow of a fluid along a curve.
- The flux across a plane curve.

The flux across a plane curve

Definition

The flux of a vector field $\mathbf{F}:\{z=0\} \subset \mathbb{R}^{3} \rightarrow\{z=0\} \subset \mathbb{R}^{3}$ along a closed plane loop $\mathbf{r}:\left[t_{0}, t_{1}\right] \subset \mathbb{R} \rightarrow\{z=0\} \subset \mathbb{R}^{3}$ is given by

$$
\mathbb{F}=\oint_{C} \mathbf{F} \cdot \mathbf{n} d s
$$

where \mathbf{n} is the curve outer unit normal vector in the plane $\{z=0\}$.

Example

Remarks:

- \mathbf{F} is defined on $\{z=0\}$.
- The loop C lies on $\{z=0\}$.
- Simple formula for \mathbf{n} ? Yes.

$$
\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}\right|}\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle
$$

The flux across a plane curve

Theorem (Counterclockwise loops.)
The flux of a vector field $\mathbf{F}=\left\langle F_{x}(x, y), F_{y}(x, y), 0\right\rangle$ along a closed, counterclockwise plane loop $\mathbf{r}(t)=\langle x(t), y(t), 0\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t
$$

Proof:

Remarks: Since C is counterclockwise traversed, $\mathbf{n}=\mathbf{u} \times \mathbf{k}$, where $\mathbf{u}=\mathbf{r}^{\prime} /\left|\mathbf{r}^{\prime}\right|$.

$$
\mathbf{u}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle x^{\prime}(t), y^{\prime}(t), 0\right\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle .
$$

$$
\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}\right|}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x^{\prime} & y^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right| \Rightarrow \mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}\right|}\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle
$$

The flux across a plane curve

Theorem (Counterclockwise loops.)

The flux of a vector field $\mathbf{F}=\left\langle F_{x}(x, y), F_{y}(x, y), 0\right\rangle$ along a closed, counterclockwise plane loop $\mathbf{r}(t)=\langle x(t), y(t), 0\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Proof: Recall: $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}\right|}\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle$.

$$
\begin{gathered}
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left\langle F_{x}, F_{y}, 0\right\rangle \cdot\left\langle y^{\prime}(t),-x^{\prime}(t), 0\right\rangle \frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\mathbf{r}^{\prime}(t)\right| d t \\
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[F_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
\end{gathered}
$$

The flux across a plane curve

Example

Find the flux of a field $\mathbf{F}=\langle-y, x, 0\rangle$ across the plane closed loop given by $\mathbf{r}_{1}=\langle a \cos (t), a \sin (t), 0\rangle$ for $t \in[0, \pi]$, and $\mathbf{r}_{2}=\langle t, 0,0\rangle$ for $t \in[-a, a]$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C_{1}} \mathbf{F}_{1} \cdot \mathbf{n}_{1} d s+\int_{C_{2}} \mathbf{F}_{2} \cdot \mathbf{n}_{2} d s$
Along C_{1} we have: $\mathbf{F}_{1}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$ and

$$
x^{\prime}(t)=-a \sin (t), \quad y^{\prime}(t)=a \cos (t)
$$

Therefore,
$F_{1 x}(t) y^{\prime}(t)-F_{1 y}(t) x^{\prime}(t)=-a^{2} \sin (t) \cos (t)+a^{2} \sin (t) \cos (t)=0$.
Hence: $\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s=0$.

The flux across a plane curve

Example

Find the flux of a field $\mathbf{F}=\langle-y, x, 0\rangle$ across the plane closed loop given by $\mathbf{r}_{1}=\langle a \cos (t), a \sin (t), 0\rangle$ for $t \in[0, \pi]$, and $\mathbf{r}_{2}=\langle t, 0,0\rangle$ for $t \in[-a, a]$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C_{1}} \mathbf{F}_{1} \cdot \mathbf{n}_{1} d s+\int_{C_{2}} \mathbf{F}_{2} \cdot \mathbf{n}_{2} d s$
Along C_{2} we have: $\mathbf{F}_{2}(t)=\langle 0, t, 0\rangle$ and $x^{\prime}(t)=1, y^{\prime}(t)=0$. So,

$$
\begin{aligned}
F_{2 x}(t) y^{\prime}(t)-F_{2 y}(t) x^{\prime}(t)=0-t & \Rightarrow \int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s=\int_{-a}^{a}-t d t \\
\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s=-\left(\left.\frac{t^{2}}{2}\right|_{-a} ^{a}\right) & \Rightarrow \int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s=0 .
\end{aligned}
$$

We conclude: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=0$.

