
Integrals along a curve in space. (Sect. 16.1)

I Line integrals in space.

I The addition of line integrals.

I Mass and center of mass of wires.

Line integrals in space

Definition
The line integral of a function f : D ⊂ R3 → R along a curve
associated with the function r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

f ds =

∫ s1

s0

f (̂r(s)) ds,

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1.
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Line integrals in space

Remarks:

I A line integral is an integral of a function along a curved path.

I The name curved integrals would be a better terminology.
I Line integrals originate in the early 1800 to study new physical

situations. For example:

(1) To describe the work done by a force along a path.
(2) To solve problems involving fluid flows, electricity, magnetism.

I The line integral is independent of the curve original
parametrization.

I In other words, given two different parametrization of the
curve, with values r(t), and r̃(t̃), then the value of the line
integral is the same for both parametrizations.

I Because the line integral is computed using the curve
arc-length parametrization, which is unique for every curve.

Line integrals in space

Theorem (General parametrization formula)

The line integral of a continuous function f : D ⊂ R3 → R along a
differentiable curve r : [t0, t1] ⊂ R → D ⊂ R3 can be expressed as∫ s1

s0

f (̂r(s)) ds =

∫ t1

t0

f (r(t)) |r′(t)| dt,

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1.

Proof: Recall the curve arc-length function s(t) =

∫ t

t0

|r′(τ)| dτ .

Then ds = |r′(t)| dt. Also, r̂(s(t)) = r(t). Then, the integration by
substitution formula implies∫ s1

s0

f
[̂
r(s(t))

]
ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt,

s0 = s(t0),

s1 = s(t1).



Line integrals in space

Remarks:

I When performing a line integral, the curve is always
parametrized with its arc-length function.

I In this sense, a line integral is independent of the original
parametrization of the curve.

I Line integrals can be defined on curves on the plane. In this
case, the line integral is the area of the curtain under the
graph of the function is the figure below.
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The 2-dim line integral is an area, since
the curve arc-length parametrization is
used in the line integral computation.

Line integrals in space

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: (r, straight line.) Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space

Example

Evaluate the line integral of the function f (x , y , z) =
√

x2 + z2

along the curve r(t) = 〈0, a cos(t), a sin(t)〉, in t ∈ [0, π/2].

Solution: (r, half circle.)Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈0,−a sin(t), a cos(t)〉, therefore its

magnitude is |r′(t)| =
√

a2 sin2(t) + a2 cos2(t) = |a|. The values
of f along the curve are

f (r(t)) =

√
0 + a2 sin2(t) ⇒ f (r(t)) = |a|| sin(t)|.∫

C

f ds =

∫ π/2

0
|a| sin(t) |a| dt = a2

(
− cos(t)

∣∣∣π/2

0

)
.

∫
C

f ds = a2. C
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The addition of line integrals

Theorem
If a curve C ⊂ D in space is the union of the differentiable curves
C1, · · · , Cn, then the line integral of a continuous function
f : D ⊂ R3 → R along C satisfies∫

C

f ds =

∫
C1

f ds + · · ·+
∫

Cn

f ds.

Remark:
This result is useful to compute line
integral along piecewise differentiable
curves.
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The addition of line integrals
Example

Evaluate the line integral of f (x , y , z) = x +
√

y − z2 along the
path C = C1 ∪ C2, where C1 is the image of r1(t) = 〈t, t2, 0〉 for
t ∈ [0, 1], and C2 is the image of r2(t) = 〈1, 1, t〉 for t ∈ [0, 1].

Solution:

2

z

1

1

x

yC

C

1

∫
C

f ds =

∫
C1

f ds +

∫
C2

f ds.

r′
1(t) = 〈1, 2t, 0〉 ⇒ |r′

1(t)| =
√

1 + 4t2.

f (r1(t)) = t + t = 2t.∫
C1

f ds =

∫ 1

0
2t

√
1 + 4t2 dt, u = 1 + 4t2, du = 8t dt.

∫
C1

f ds =
1

4

∫ 5

1
u1/2 du =

1

4

2

3

(
u3/2

∣∣∣5
1

)
⇒

∫
C1

f ds =
1

6
(5
√

5− 1).



The addition of line integrals
Example

Evaluate the line integral of f (x , y , z) = x +
√

y − z2 along the
path C = C1 ∪ C2, where C1 is the image of r1(t) = 〈t, t2, 0〉 for
t ∈ [0, 1], and C2 is the image of r2(t) = 〈1, 1, t〉 for t ∈ [0, 1].

Solution:

2
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yC

C
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∫
C

f ds =

∫
C1

f ds +

∫
C2

f ds.

r′
2(t) = 〈0, 0, 1〉 ⇒ |r′

2(t)| = 1.

f (r2(t)) = 1 + 1− t2 = 2− t2.

∫
C2

f ds =

∫ 1

0
(2− t2) dt = 2

(
t
∣∣∣1
0

)
−

( t3

3

∣∣∣1
0

)
= 2− 1

3
=

5

3
.∫

C

f ds =
1

6
(5
√

5− 1) +
5

3
⇒

∫
C1

f ds =
1

6
(5
√

5 + 9). C
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Mass and center of mass of wires

Remark:
The total mass, the center of mass, and the moments of inertia of
wires with arbitrary shapes in space, given by a curve C and having
a density function ρ, can be computed using line integrals.

I M =
∫

C
ρ ds;

I x =
1

M

∫
C

xρ ds, y =
1

M

∫
C

yρ ds, z =
1

M

∫
C

zρ ds;

I Ix =
1

M

∫
C

(y2 + z2)ρ ds,

I Iy =
1

M

∫
C

(x2 + z2)ρ ds,

I Iz =
1

M

∫
C

(x2 + y2)ρ ds.

Mass and center of mass of wires

Example

Find the moments of inertia of a wheel of radius R and density ρ0.

Solution: We place the wheel at the center of the z = 0 plane. The
curve for the wheel is r(t) = 〈R cos(t),R sin(t), 0〉, t ∈ [0, 2π].
Therefore, r′(t) = 〈−R sin(t),R cos(t), 0〉, hence |r′(t)| = R.
Recall: Ix =

∫
C
(y2 + z2)ρ0 ds, Iz =

∫
C
(x2 + y2)ρ0 ds.

Ix =

∫ 2π

0
R2 sin2(t)ρ0R dt = R3ρ0

∫ 2π

0

1

2

[
1− cos(2t)

]
dt

Ix = R3ρ0

[
π − 1

4

(
sin(2t)

∣∣∣2π

0

)]
⇒ Ix = πR3ρ0.

By symmetry, Ix = Iy . Finally,

Iz =

∫ 2π

0
R2ρ0R dt ⇒ Iz = 2πR3ρ0. C


