Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.

Review: Polar coordinates

Definition
The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ) defined by the picture.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first or fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) .
$$

Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.
- Double integrals in arbitrary regions.

Double integrals on disk sections

Theorem
If $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in the region

$$
R=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{0}, r_{1}\right], \theta \in\left[\theta_{0}, \theta_{1}\right]\right\}
$$

where $0 \leqslant \theta_{0} \leqslant \theta_{1} \leqslant 2 \pi$, then the double integral of function f in that region can be expressed in polar coordinates as follows,

$$
\iint_{R} f d A=\int_{\theta_{0}}^{\theta_{1}} \int_{r_{0}}^{r_{1}} f(r, \theta) r d r d \theta
$$

Remark:

- Disk sections in polar coordinates are the analogous to rectangular sections in Cartesian coordinates.
- The boundaries of each domain, a rectangle in Cartesian and a disk section in polar coordinates, are defined by a constant value of a coordinate.
- Notice the extra factor r on the right-hand side above.

Double integrals on disk sections

Remark:
Disk sections in polar coordinates are analogous to rectangular sections in Cartesian coordinates.

$$
\begin{aligned}
& x_{0} \leqslant x \leqslant x_{1} \\
& y_{0} \leqslant y \leqslant y_{1}
\end{aligned}
$$

$$
\begin{gathered}
r_{0} \leqslant r \leqslant r_{1} \\
\theta_{0} \leqslant \theta \leqslant \theta_{1}
\end{gathered}
$$

Double integrals on disk sections

Example

Find the area of an arbitrary circular section
$R=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{0}, r_{1}\right], \theta \in\left[\theta_{0}, \theta_{1}\right]\right\}$.
Evaluate that area in the particular case of a disk with radius R.
Solution:

$$
\begin{gathered}
A=\int_{\theta_{0}}^{\theta_{1}} \int_{r_{0}}^{r_{1}}(r d r) d \theta=\int_{\theta_{0}}^{\theta_{1}}\left(\left.\frac{r^{2}}{2}\right|_{r_{0}} ^{r_{1}}\right) d \theta \\
A=\int_{\theta_{0}}^{\theta_{1}} \frac{1}{2}\left[\left(r_{1}\right)^{2}-\left(r_{0}\right)^{2}\right] d \theta \Rightarrow A=\frac{1}{2}\left[\left(r_{1}\right)^{2}-\left(r_{0}\right)^{2}\right]\left(\theta_{1}-\theta_{0}\right) .
\end{gathered}
$$

The case of a disk is: $\theta_{0}=0, \theta_{1}=2 \pi, r_{0}=0$ and $r_{1}=R$.
In that case we re-obtain the usual formula $A=\pi R^{2}$.

Double integrals on disk sections

Example

Find the integral of $f(r, \theta)=r^{2} \cos (\theta)$ in the disk

$$
R=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in[0,1], \theta \in[0, \pi / 4]\right\} .
$$

Solution:

$$
\begin{gathered}
\iint_{R} f d A=\int_{0}^{\pi / 4} \int_{0}^{1} r^{2} \cos (\theta)(r d r) d \theta \\
\iint_{R} f d A=\int_{0}^{\pi / 4}\left(\left.\frac{r^{4}}{4}\right|_{0} ^{1}\right) \cos (\theta) d \theta=\left.\frac{1}{4} \sin (\theta)\right|_{0} ^{\pi / 4}
\end{gathered}
$$

We conclude that $\iint_{R} f d A=\sqrt{2} / 8$.

Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.

Double integrals in arbitrary regions

Theorem
If the function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in the region

$$
R=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[h_{0}(\theta), h_{1}(\theta)\right], \theta \in\left[\theta_{0}, \theta_{1}\right]\right\}
$$

where $0 \leqslant h_{0}(\theta) \leqslant h_{1}(\theta)$ are continuous functions defined on an interval $\left[\theta_{0}, \theta_{1}\right]$, then the integral of function f in R is given by

$$
\iint_{R} f(r, \theta) d A=\int_{\theta_{0}}^{\theta_{1}} \int_{h_{0}(\theta)}^{h_{1}(\theta)} f(r, \theta) r d r d \theta
$$

Double integrals in arbitrary regions

Example

Find the area of the region bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first show that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Completing the square in x we obtain

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

Analogously, $r=\sin (\theta)$ is the circle

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2} .
$$

Double integrals in arbitrary regions.

Example

Find the area of the region bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: $A=2 \int_{0}^{\pi / 4} \int_{0}^{\sin (\theta)} r d r d \theta=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right]
$$

$$
A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]=\frac{\pi}{8}-\frac{1}{4} \quad \Rightarrow \quad A=\frac{1}{8}(\pi-2) .
$$

Also works: $A=\int_{0}^{\pi / 4} \int_{0}^{\sin (\theta)} r d r d \theta+\int_{\pi / 4}^{\pi / 2} \int_{0}^{\cos (\theta)} r d r d \theta$.

Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.

Changing Cartesian integrals into polar integrals

Theorem

If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, and $f(x, y)$ represents the function values in Cartesian coordinates, then holds

$$
\iint_{D} f(x, y) d x d y=\iint_{D} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Example

Compute the integral of $f(x, y)=x^{2}+2 y^{2}$ on
$D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant y, \quad 0 \leqslant x, \quad 1 \leqslant x^{2}+y^{2} \leqslant 2\right\}$.
Solution: First, transform Cartesian into polar coordinates:
$x=r \cos (\theta), y=r \sin (\theta)$. Since $f(x, y)=\left(x^{2}+y^{2}\right)+y^{2}$,

$$
f(r \cos (\theta), r \sin (\theta))=r^{2}+r^{2} \sin ^{2}(\theta)
$$

Changing Cartesian integrals into polar integrals

Example

Compute the integral of $f(x, y)=x^{2}+2 y^{2}$ on
$D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant y, 0 \leqslant x, \quad 1 \leqslant x^{2}+y^{2} \leqslant 2\right\}$.
Solution: We computed: $f(r \cos (\theta), r \sin (\theta))=r^{2}+r^{2} \sin ^{2}(\theta)$.

The region is

$$
\begin{gathered}
\iint_{D} f(r, \theta) d A=\int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}} r^{2}\left(1+\sin ^{2}(\theta)\right) r d r d \theta \\
\iint_{D} f(r, \theta) d A=\left[\int_{0}^{\pi / 2}\left(1+\sin ^{2}(\theta)\right) d \theta\right]\left[\int_{1}^{\sqrt{2}} r^{3} d r\right]
\end{gathered}
$$

Changing Cartesian integrals into polar integrals

Example

Compute the integral of $f(x, y)=x^{2}+2 y^{2}$ on
$D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant y, 0 \leqslant x, \quad 1 \leqslant x^{2}+y^{2} \leqslant 2\right\}$.
Solution: $\iint_{D} f(r, \theta) d A=\left[\int_{0}^{\pi / 2}\left(1+\sin ^{2}(\theta)\right) d \theta\right]\left[\int_{1}^{\sqrt{2}} r^{3} d r\right]$.
$\iint_{D} f(r, \theta) d A=\left[\left(\left.\theta\right|_{0} ^{\pi / 2}\right)+\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos (2 \theta)) d \theta\right] \frac{1}{4}\left(\left.r^{4}\right|_{1} ^{\sqrt{2}}\right)$
$\iint_{D} f(r, \theta) d A=\left[\frac{\pi}{2}+\frac{1}{2}\left(\left.\theta\right|_{0} ^{\pi / 2}\right)-\frac{1}{4}\left(\left.\sin (2 \theta)\right|_{0} ^{\pi / 2}\right)\right] \frac{3}{4}=\left[\frac{\pi}{2}+\frac{\pi}{4}\right] \frac{3}{4}$.
We conclude: $\iint_{D} f(r, \theta) d A=\frac{9}{16} \pi$.

Changing Cartesian integrals into polar integrals

Example

Integrate $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$ on the domain
$D=\left\{(r, \theta) \in R^{2}: 0 \leqslant \theta \leqslant \pi, 0 \leqslant r \leqslant 2\right\}$.
Solution: Since $f(r \cos (\theta), r \sin (\theta))=e^{-r^{2}}$, the double integral is

$$
\iint_{D} f(x, y) d x d y=\int_{0}^{\pi} \int_{0}^{2} e^{-r^{2}} r d r d \theta
$$

Substitute $u=r^{2}$, hence $d u=2 r d r$, we obtain

$$
\iint_{D} f(x, y) d x d y=\frac{1}{2} \int_{0}^{\pi} \int_{0}^{4} e^{-u} d u d \theta=\frac{1}{2} \int_{0}^{\pi}\left(-\left.e^{-u}\right|_{0} ^{4}\right) d \theta
$$

We conclude: $\iint_{D} f(x, y) d x d y=\frac{\pi}{2}\left(1-\frac{1}{e^{4}}\right)$.

Double integrals in polar coordinates (Sect. 15.4)

- Review: Polar coordinates.
- Double integrals in disk sections.
- Double integrals in arbitrary regions.
- Changing Cartesian integrals into polar integrals.
- Computing volumes using double integrals.

Computing volumes using double integrals

Example

Find the volume between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: Let us first draw the sets that form the volume we are interested to compute.

$$
z= \pm \sqrt{1-r^{2}}
$$

$$
z=r
$$

Computing volumes using double integrals

Example

Find the volume between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: The integration region can be decomposed as follows:

The volume we are interested to compute is:

$$
V=\int_{0}^{2 \pi} \int_{0}^{r_{0}} \sqrt{1-r^{2}}(r d r) d \theta-\int_{0}^{2 \pi} \int_{0}^{r_{0}} r(r d r) d \theta .
$$

We need to find r_{0}, the intersection of the cone and the sphere.

Computing volumes using double integrals

Example

Find the volume between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: We find r_{0}, the intersection of the cone and the sphere.

$$
\sqrt{1-r_{0}^{2}}=r_{0} \quad \Leftrightarrow \quad 1-r_{0}^{2}=r_{0}^{2} \quad \Leftrightarrow \quad 2 r_{0}^{2}=1 ;
$$

that is, $r_{0}=1 / \sqrt{2}$. Therefore

$$
\begin{aligned}
V= & \int_{0}^{2 \pi} \int_{0}^{1 / \sqrt{2}} \sqrt{1-r^{2}}(r d r) d \theta-\int_{0}^{2 \pi} \int_{0}^{1 / \sqrt{2}} r(r d r) d \theta \\
& V=2 \pi\left[\int_{0}^{1 / \sqrt{2}} \sqrt{1-r^{2}}(r d r)-\int_{0}^{1 / \sqrt{2}} r(r d r)\right]
\end{aligned}
$$

Computing volumes using double integrals

Example

Find the volume between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: $V=2 \pi\left[\int_{0}^{1 / \sqrt{2}} \sqrt{1-r^{2}}(r d r)-\int_{0}^{1 / \sqrt{2}} r(r d r)\right]$.
Use the substitution $u=1-r^{2}$, so $d u=-2 r d r$. We obtain,

$$
\begin{gathered}
V=2 \pi\left[\frac{1}{2} \int_{1 / 2}^{1} u^{1 / 2} d u-\left.\frac{1}{3} r^{3}\right|_{0} ^{1 / \sqrt{2}}\right] \\
V=2 \pi\left[\left.\frac{1}{2} \frac{2}{3} u^{3 / 2}\right|_{1 / 2} ^{1}-\frac{1}{3} \frac{1}{2^{3 / 2}}\right]=\frac{2 \pi}{3}\left[1-\frac{1}{2^{3 / 2}}-\frac{1}{2^{3 / 2}}\right],
\end{gathered}
$$

We conclude: $V=\frac{\pi}{3}(2-\sqrt{2})$.

