Double integrals on regions (Sect. 15.2)

- Review: Fubini's Theorem on rectangular domains.
- Fubini's Theorem on non-rectangular domains.
- Type I: Domain functions $y(x)$.
- Type II: Domain functions $x(y)$.
- Finding the limits of integration.

Review: Fubini's Theorem on rectangular domains

Theorem
If $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in $R=[a, b] \times[c, d]$, then

$$
\begin{aligned}
\iint_{R} f(x, y) d x d y & =\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& =\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
\end{aligned}
$$

Remark: Fubini result says that double integrals can be computed doing two one-variable integrals.

Remark: On a rectangle is simple to switch the order of integration in double integrals of continuous functions.

Double integrals on regions (Sect. 15.2)

- Review: Fubini's Theorem on rectangular domains.
- Fubini's Theorem on non-rectangular domains.
- Type I: Domain functions $y(x)$.
- Type II: Domain functions $x(y)$.
- Finding the limits of integration.

Fubini's Theorem on Type I domains, $y(x)$

Theorem

If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in D, then hold (Type I):
If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in[a, b], y \in\left[g_{1}(x), g_{2}(x)\right]\right\}$, with g_{1}, g_{2} continuous functions on $[a, b]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Double integrals on regions (Sect. 15.2)

- Review: Fubini's Theorem on rectangular domains.
- Fubini's Theorem on non-rectangular domains.
- Type I: Domain functions $y(x)$.
- Type II: Domain functions $x(y)$.
- Finding the limits of integration.

Fubini's Theorem on Type II domains, $x(y)$

Theorem
If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in D, then hold (Type II):
If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in\left[h_{1}(y), h_{2}(y)\right], y \in[c, d]\right\}$, with h_{1}, h_{2} continuous functions on $[c, d]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Summary: Fubini's Theorem on non-rectangular domains

Theorem
If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in D, then hold:
(a) (Type I) If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in[a, b], y \in\left[g_{1}(x), g_{2}(x)\right]\right\}$, with g_{1}, g_{2} continuous functions on $[a, b]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(b) (Type II) If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in\left[h_{1}(y), h_{2}(y)\right], y \in[c, d]\right\}$, with h_{1}, h_{2} continuous functions on $[c, d]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

A double integral on a Type I domain

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$, on the domain
$D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant 1, \quad x^{2} \leqslant y \leqslant x\right\}$.
Solution:
This is a Type I domain, with lower boundary

$$
y=g_{1}(x)=x^{2}
$$

and upper boundary

$$
y=g_{2}(x)=x
$$

A double integral on a Type I domain.

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$, on the domain $D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant 1, \quad x^{2} \leqslant y \leqslant x\right\}$.

Solution: $I=\iint_{D} f(x, y) d x d y=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$ with $g_{1}(x)=x^{2}$ and $g_{2}(x)=x$, we obtain

$$
\begin{gathered}
I=\iint_{D} f(x, y) d x d y=\int_{0}^{1} \int_{x^{2}}^{x}\left(x^{2}+y^{2}\right) d y d x \\
I=\int_{0}^{1}\left[x^{2}\left(\left.y\right|_{x^{2}} ^{x}\right)+\left(\left.\frac{y^{3}}{3}\right|_{x^{2}} ^{x}\right)\right] d x \\
I=\int_{0}^{1}\left[x^{2}\left(x-x^{2}\right)+\frac{1}{3}\left(x^{3}-x^{6}\right)\right] d x
\end{gathered}
$$

A double integral on a Type I domain

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$, on the domain
$D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant 1, \quad x^{2} \leqslant y \leqslant x\right\}$.
Solution: Recall: $I=\int_{0}^{1}\left[x^{2}\left(x-x^{2}\right)+\frac{1}{3}\left(x^{3}-x^{6}\right)\right] d x$.

$$
\begin{gathered}
I=\int_{0}^{1}\left[x^{3}-x^{4}+\frac{1}{3} x^{3}-\frac{1}{3} x^{6}\right] d x=\left.\left[\frac{x^{4}}{4}-\frac{x^{5}}{5}+\frac{x^{4}}{12}-\frac{x^{7}}{21}\right]\right|_{0} ^{1} \\
I=\frac{1}{3}-\frac{1}{5}-\frac{1}{21}=\frac{9}{(3)(5)(7)} .
\end{gathered}
$$

We conclude: $\iint_{D} f(x, y) d x d y=\frac{3}{35}$.

Summary: Fubini's Theorem on non-rectangular domains

Theorem
If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in D, then hold:
(a) (Type I) If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in[a, b], y \in\left[g_{1}(x), g_{2}(x)\right]\right\}$, with g_{1}, g_{2} continuous functions on $[a, b]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(b) (Type II) If $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in\left[h_{1}(y), h_{2}(y)\right], y \in[c, d]\right\}$, with h_{1}, h_{2} continuous functions on $[c, d]$, then

$$
\iint_{D} f(x, y) d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

A double integral on a Type II domain

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$ on the domain
$D=\left\{(x, y) \in \mathbb{R}^{2}: y \leqslant x \leqslant \sqrt{y}, \quad 0 \leqslant y \leqslant 1\right\}$.
Solution:
This is a Type II domain, with left boundary

$$
x=h_{1}(y)=y
$$

and right boundary

$$
x=h_{2}(y)=\sqrt{y}
$$

Remark:
This domain is both Type I and Type II: $y=x^{2} \Leftrightarrow x=\sqrt{y}$.

A double integral on a Type I domain

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$, on the domain $D=\left\{(x, y) \in \mathbb{R}^{2}: y \leqslant x \leqslant \sqrt{y}, \quad 0 \leqslant y \leqslant 1\right\}$.

Solution: $I=\iint_{D} f(x, y) d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$ with $h_{1}(y)=y$ and $h_{2}(y)=\sqrt{y}$, we obtain

$$
\begin{gathered}
I=\int_{0}^{1} \int_{y}^{\sqrt{y}}\left(x^{2}+y^{2}\right) d x d y \\
I=\int_{0}^{1}\left[\left(\left.\frac{x^{3}}{3}\right|_{y} ^{\sqrt{y}}\right)+y^{2}\left(\left.x\right|_{y} ^{\sqrt{y}}\right)\right] d y \\
I=\int_{0}^{1}\left[\frac{1}{3}\left(y^{3 / 2}-y^{3}\right)+y^{2}\left(y^{1 / 2}-y\right)\right] d y .
\end{gathered}
$$

A double integral on a Type I domain

Example

Find the integral of $f(x, y)=x^{2}+y^{2}$, on the domain
$D=\left\{(x, y) \in \mathbb{R}^{2}: y \leqslant x \leqslant \sqrt{y}, \quad 0 \leqslant y \leqslant 1\right\}$.
Solution: $I=\int_{0}^{1}\left[\frac{1}{3}\left(y^{3 / 2}-y^{3}\right)+y^{2}\left(y^{1 / 2}-y\right)\right] d y$.

$$
\begin{gathered}
I=\int_{0}^{1}\left[\frac{1}{3} y^{3 / 2}-\frac{1}{3} y^{3}+y^{5 / 2}-y^{3}\right] d y \\
I=\left.\left[\frac{1}{3} \frac{2}{5} y^{5 / 2}-\frac{1}{3} \frac{y^{4}}{4}+\frac{2}{7} y^{7 / 2}-\frac{y^{4}}{4}\right]\right|_{0} ^{1} \\
I=\frac{2}{15}-\frac{1}{12}+\frac{2}{7}-\frac{1}{4}=\frac{9}{(3)(5)(7)}
\end{gathered}
$$

We conclude $\iint_{D} f(x, y) d x d y=\frac{3}{35}$.

Domains Type I and Type II

Summary: We have shown that a double integral of a function f on the domain D given in the pictures below holds,

$$
\iint_{D} f(x, y) d x d y=\int_{0}^{1} \int_{x^{2}}^{x} f(x, y) d y d x=\int_{0}^{1} \int_{y}^{\sqrt{y}} f(x, y) d x d y
$$

Double integrals on regions (Sect. 15.2)

- Review: Fubini's Theorem on rectangular domains.
- Fubini's Theorem on non-rectangular domains.
- Type I: Domain functions $y(x)$.
- Type II: Domain functions $x(y)$.
- Finding the limits of integration.

Domains Type I and Type II

Example

Find the limits of integration of $\iint_{D} f(x, y) d x d y$ in the domain
$D=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{9}+\frac{y^{2}}{4} \leqslant 1\right\}$ when D is considered first as Type I and then as Type II.
Solution: The boundary is the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
So, the boundary as Type I is given by

$$
y=-2 \sqrt{1-\frac{x^{2}}{9}}=g_{1}(x), \quad y=2 \sqrt{1-\frac{x^{2}}{9}}=g_{2}(x)
$$

The boundary as Type II is given by

$$
x=-3 \sqrt{1-\frac{y^{2}}{4}}=h_{1}(y), \quad x=3 \sqrt{1-\frac{y^{2}}{4}}=h_{2}(y)
$$

Domains Type I and Type II

Example

Reverse the order of integration in $\int_{0}^{1} \int_{1}^{e^{x}} d y d x$.

Solution:

This integral is written as Type I, since we first integrate on vertical intervals $\left[1, e^{x}\right]$, with boundaries $y=e^{x}, y=1$, while $x \in[0,1]$.
 Invert the first equation and from the figure we get the left and right boundaries:

$$
x=\ln (y), \quad x=1, \quad \text { with } \quad y \in[1, e] .
$$

Therefore, we conclude that $\int_{0}^{1} \int_{1}^{e^{x}} d y d x=\int_{1}^{e} \int_{\ln (y)}^{1} d x d y . \quad \triangleleft$

