
Local and absolute extrema, saddle points (Sect. 14.7)

I Review: Local extrema for functions of one variable.

I Definition of local extrema.
I Characterization of local extrema.

I First derivative test.
I Second derivative test.

I Absolute extrema of a function in a domain.

Review: Local extrema for functions of one variable

Recall: Main results on local extrema for f (x):

xa b c d

f(x)y at f f ′ f ′′

a max. 0 < 0

b infl. 6= 0 ± 0 ∓
c min. 0 > 0

d infl. = 0 ± 0 ∓

Remarks: Assume that f is twice continuously differentiable.

I If x0 is local maximum or minimum of f , then f ′(x0) = 0.

I If f ′(x0) = 0, then x0 is a critical point of f , that is, x0 is a
maximum or a minimum or an inflection point.

I The second derivative test determines whether a critical point
is a maximum, minimum or an inflection point.
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Definition of local extrema for functions of two variables

Definition
A function f : D ⊂ R2 → R has a local maximum at the point
(a, b) ∈ D iff holds that f (a, b) > f (x , y) for every point (x , y) in
a neighborhood of (a, b).
A function f : D ⊂ R2 → R has a local minimum at the point
(a, b) ∈ D iff holds that f (a, b) 6 f (x , y) for every point (x , y) in
a neighborhood of (a, b).



Definition of local extrema for functions of two variables

Definition
A differentiable function f : D ⊂ R2 → R has a saddle point at an
interior point (a, b) ∈ D iff in every open disk in D centered at
(a, b) there always exist points (x , y) where f (a, b) < f (x , y) and
other points (x , y) where f (a, b) > f (x , y).
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Characterization of local extrema

Theorem (First Derivative Test)

If a differentiable function f has a local maximum or minimum at
(a, b) then holds

(
∇f

)∣∣
(a,b)

= 〈0, 0〉.

Remark: The tangent plane at a local extremum is horizontal,
since its normal vector is n = 〈fx , fy ,−1〉 = 〈0, 0,−1〉.

Definition
The interior point (a, b) ∈ D of a differentiable function
f : D ⊂ R2 → R is a critical point of f iff

(
∇f

)∣∣
(a,b)

= 〈0, 0〉.

Remark:
Critical points include
local maxima, local
minima, and saddle points.

Characterization of local extrema

Example

Find the critical points of the function f (x , y) = −x2 − y2.

Solution: The critical points are the points where ∇f vanishes.
Since ∇f = 〈−2x ,−2y〉, the only solution to ∇f = 〈0, 0〉 is x = 0,
y = 0. That is, (a, b) = (0, 0). C

Remark: Since f (x , y) 6 0 for all (x , y) ∈ R2 and f (0, 0) = 0,
then the point (0, 0) must be a local maximum of f .

Example

Find the critical points of the function f (x , y) = x2 − y2.

Solution: Since ∇f = 〈2x ,−2y〉, the only solution to ∇f = 〈0, 0〉
is x = 0, y = 0. That is, we again obtain (a, b) = (0, 0). C



Characterization of local extrema

Theorem (Second derivative test)

Let (a, b) be a critical point of f : D ⊂ R2 → R, that is,(
∇f

)∣∣
(a,b)

= 〈0, 0〉. Assume that f has continuous second

derivatives in an open disk in D with center in (a, b) and denote

D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Then, the following statements hold:

I If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

I If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

I If D < 0, then f (a, b) is a saddle point.

I If D = 0 the test is inconclusive.

Notation: The number D is called the discriminant of f at (a, b).

Characterization of local extrema

Example

Find the local extrema of f (x , y) = y2 − x2 and determine whether
they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

∇f = 〈−2x , 2y〉 ⇒
(
∇f

)∣∣
(a,b)

= 〈0, 0〉 iff (a, b) = (0, 0).

The only critical point is (a, b) = (0, 0).

We need to compute D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Since fxx(0, 0) = −2, fyy (0, 0) = 2, and fxy (0, 0) = 0, we get

D = (−2)(2) = −4 < 0 ⇒ saddle point at (0, 0). C



Characterization of local extrema.

Example

Is the point (a, b) = (0, 0) a local extrema of f (x , y) = y2x2?

Solution: We first verify that (0, 0) is a critical point of f :

∇f (x , y) = 〈2xy2, 2yx2〉, ⇒
(
∇f

)∣∣
(0,0)

= 〈0, 0〉,

therefore, (0, 0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f .

We need to compute D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Since fxx(x , y) = 2y2, fyy (x , y) = 2x2, and fxy (x , y) = 4xy ,

we obtain fxx(0, 0) = 0, fyy (0, 0) = 0, and fxy (0, 0) = 0,

hence D = 0 and the test is inconclusive. C

Characterization of local extrema.

Example

Is the point (a, b) = (0, 0) a local extrema of f (x , y) = y2x2?

Solution: Since f (x , y) = x2y2 > 0 for all (x , y), and f (0, 0) = 0,
then (0, 0) is a local minimum. (Also a global minimum.) C

This is confirmed in the graph of f .

y

x
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Absolute extrema of a function in a domain

Definition
A function f : D ⊂ R2 → R has an absolute maximum at the point
(a, b) ∈ D iff f (a, b) > f (x , y) for all (x , y) ∈ D.
A function f : D ⊂ R2 → R has an absolute minimum at the point
(a, b) ∈ D iff f (a, b) 6 f (x , y) for all (x , y) ∈ D.

Remark: Local extrema need not
be the absolute extrema.

ba c d

f(x)

minimum

Absolute maximum

Local maximum

Local and absolute

y

x

Remark: Absolute extrema may
not be defined on open intervals.

a c d

No absolute extrema

Local minimum

Local maximum

y f(x)

xb



Review: Functions of one variable

Theorem
Every continuous function on a closed interval, f : [a, b] ⊂ R → R,
with a < b ∈ R, always has absolute extrema.

ba c d

f(x)

minimum

Absolute maximum

Local maximum

Local and absolute

y

x

Recall:

I Intervals [a, b] are bounded and closed sets in R.

I The set [a, b] is closed, since the boundary points belong to
the set, and it is bounded, since it does not extend to infinity.

Recall: On open and closed sets in Rn

Definition
A set S ∈ Rn, with n ∈ N, is called open iff every point in S is an
interior point. The set S is called closed iff S contains its
boundary. A set S is called bounded iff S is contained in ball,
otherwise S is called unbounded.

y

open and bounded bounded

x

closed and bounded

x

closed and

unbounded

y

Theorem
If f : D ⊂ R2 → R is continuous in a closed and bounded set D,
then f has an absolute maximum and an absolute minimum in D.



Absolute extrema on closed and bounded sets

Problem:
Find the absolute extrema of a function f : D ⊂ R2 → R in a
closed and bounded set D.

Solution:

(1) Find every critical point of f in the interior of D and evaluate
f at these points.

(2) Find the boundary points of D where f has local extrema, and
evaluate f at these points.

(3) Look at the list of values for f found in the previous two steps.

If f (x0, y0) is the biggest (smallest) value of f in the list above,
then (x0, y0) is the absolute maximum (minimum) of f in D.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function
f (x , y) = 3 + xy − x + 2y on the closed
domain given in the Figure. xI

II III

51

4

y

Solution:
(1) We find all critical points in the interior of the domain:

∇f = 〈(y − 1), (x + 2)〉 = 〈0, 0〉 ⇒ (x0, y0) = (−2, 1).

Since (−2, 1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of D:
Boundary I: The segment y = 0, x ∈ [1, 5]. We select the end
points (1, 0), (5, 0), and we record: f (1, 0) = 2 and f (5, 0) = −2.
We look for critical point on the interior of Boundary I:
Since g(x) = f (x , 0) = 3− x , so g ′ = −1 6= 0.
No critical points in the interior of Boundary I.
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Example
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II III

51

4

y

Solution: Boundary II: The segment x = 1, y ∈ [0, 4]. We select
the end point (1, 4) and we record: f (1, 4) = 14.
We look for critical point on the interior of Boundary II:
Since g(y) = f (1, y) = 3 + y − 1 + 2y = 2 + 3y , so g ′ = 3 6= 0.
No critical points in the interior of Boundary II.

Boundary III: The segment y = −x + 5, x ∈ [1, 5].
We look for critical point on the interior of Boundary III:
Since g(x) = f (x ,−x + 5) = 3 + x(−x + 5)− x + 2(−x + 5).
We obtain g(x) = −x2 + 2x + 13, hence g ′(x) = −2x + 2 = 0
implies x = 1. So, y = 4, and we selected the point (1, 4), which
was already in our list. No critical points in the interior of III.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function
f (x , y) = 3 + xy − x + 2y on the closed
domain given in the Figure. xI

II III

51

4

y

Solution:
(3) Our list of values is:

f (1, 0) = 2 f (1, 4) = 14 f (5, 0) = −2.

We conclude:

(a) Absolute maximum at (1, 4),

(b) Absolute minimum at (5, 0).

C



A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given
surface area A0.

Solution: This problem can be solved by finding the local
maximum of an appropriate function f .

First, the functions volume and area of a rectangular box with
vertex at (0, 0, 0) and sides x , y and z are:

V (x , y , z) = xyz , A(x , y , z) = 2xy + 2xz + 2yz .

Since A(x , y , z) = A0, we obtain

z =
A0 − 2xy

2(x + y)
⇒ f (x , y) =

A0xy − 2x2y2

2(x + y)
.

A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given
surface area A0.

Solution: Find the critical points of f (x , y) =
A0xy − 2x2y2

2(x + y)
.

fx =
2A0y

2 − 4x2y2 − 8xy3

4(x + y)2
, fy =

2A0x
2 − 4x2y2 − 8yx3

4(x + y)2
.

The conditions fx = 0 and fy = 0 and x 6= 0, y 6= 0 imply

A0 = 2x2 + 4xy ,

A0 = 2y2 + 4xy ,

}
⇒ x = y ⇒ A0 = 2x2 + 4x2.

Then, x0 =

√
A0

6
= y0. Since z =

A0 − 2xy

2(x + y)
, z0 =

√
A0

6
. C


