Local and absolute extrema, saddle points (Sect. 14.7)

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Review: Local extrema for functions of one variable

Recall: Main results on local extrema for $f(x)$:

at	f	f^{\prime}	$f^{\prime \prime}$
a	max.	0	<0
b	infl.	$\neq 0$	$\pm 0 \mp$
c	min.	0	>0
d	infl.	$=0$	$\pm 0 \mp$

Remarks: Assume that f is twice continuously differentiable.

- If x_{0} is local maximum or minimum of f, then $f^{\prime}\left(x_{0}\right)=0$.
- If $f^{\prime}\left(x_{0}\right)=0$, then x_{0} is a critical point of f, that is, x_{0} is a maximum or a minimum or an inflection point.
- The second derivative test determines whether a critical point is a maximum, minimum or an inflection point.

Local and absolute extrema, saddle points (Sect. 14.7)

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Definition of local extrema for functions of two variables

Definition

A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local maximum at the point $(a, b) \in D$ iff holds that $f(a, b) \geqslant f(x, y)$ for every point (x, y) in a neighborhood of (a, b).
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local minimum at the point $(a, b) \in D$ iff holds that $f(a, b) \leqslant f(x, y)$ for every point (x, y) in a neighborhood of (a, b).

Definition of local extrema for functions of two variables

Definition

A differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a saddle point at an interior point $(a, b) \in D$ iff in every open disk in D centered at (a, b) there always exist points (x, y) where $f(a, b)<f(x, y)$ and other points (x, y) where $f(a, b)>f(x, y)$.

Local and absolute extrema, saddle points (Sect. 14.7)

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Characterization of local extrema

Theorem (First Derivative Test)
If a differentiable function f has a local maximum or minimum at (a, b) then holds $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.
Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n}=\left\langle f_{x}, f_{y},-1\right\rangle=\langle 0,0,-1\rangle$.

Definition

The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a critical point of f iff $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Remark:
Critical points include local maxima, local minima, and saddle points.

Characterization of local extrema

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$.
Solution: The critical points are the points where ∇f vanishes.
Since $\nabla f=\langle-2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0$, $y=0$. That is, $(a, b)=(0,0)$.

Remark: Since $f(x, y) \leqslant 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $f(0,0)=0$, then the point $(0,0)$ must be a local maximum of f.

Example

Find the critical points of the function $f(x, y)=x^{2}-y^{2}$.
Solution: Since $\nabla f=\langle 2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0, y=0$. That is, we again obtain $(a, b)=(0,0)$.

Characterization of local extrema

Theorem (Second derivative test)
Let (a, b) be a critical point of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, that is,
$\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$. Assume that f has continuous second derivatives in an open disk in D with center in (a, b) and denote

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

Then, the following statements hold:

- If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
- If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
- If $D<0$, then $f(a, b)$ is a saddle point.
- If $D=0$ the test is inconclusive.

Notation: The number D is called the discriminant of f at (a, b).

Characterization of local extrema

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(0,0)=-2, f_{y y}(0,0)=2$, and $f_{x y}(0,0)=0$, we get

$$
D=(-2)(2)=-4<0 \quad \Rightarrow \quad \text { saddle point at }(0,0)
$$

Characterization of local extrema.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(x, y)=2 y^{2}, \quad f_{y y}(x, y)=2 x^{2}$, and $f_{x y}(x, y)=4 x y$,
we obtain $f_{x x}(0,0)=0, \quad f_{y y}(0,0)=0$, and $f_{x y}(0,0)=0$,
hence $D=0$ and the test is inconclusive.

Characterization of local extrema.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: Since $f(x, y)=x^{2} y^{2} \geqslant 0$ for all (x, y), and $f(0,0)=0$, then $(0,0)$ is a local minimum. (Also a global minimum.)

This is confirmed in the graph of f.

Local and absolute extrema, saddle points (Sect. 14.7)

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Absolute extrema of a function in a domain

Definition

A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(a, b) \geqslant f(x, y)$ for all $(x, y) \in D$.
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(a, b) \leqslant f(x, y)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

Remark: Absolute extrema may not be defined on open intervals.

Review: Functions of one variable

Theorem

Every continuous function on a closed interval, $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, with $a<b \in \mathbb{R}$, always has absolute extrema.

Recall:

- Intervals $[a, b]$ are bounded and closed sets in \mathbb{R}.
- The set $[a, b]$ is closed, since the boundary points belong to the set, and it is bounded, since it does not extend to infinity.

Recall: On open and closed sets in \mathbb{R}^{n}

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

Theorem

If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in a closed and bounded set D, then f has an absolute maximum and an absolute minimum in D.

Absolute extrema on closed and bounded sets

Problem:

Find the absolute extrema of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ in a closed and bounded set D.

Solution:

(1) Find every critical point of f in the interior of D and evaluate f at these points.
(2) Find the boundary points of D where f has local extrema, and evaluate f at these points.
(3) Look at the list of values for f found in the previous two steps. If $f\left(x_{0}, y_{0}\right)$ is the biggest (smallest) value of f in the list above, then $\left(x_{0}, y_{0}\right)$ is the absolute maximum (minimum) of f in D.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$. We select the end points $(1,0),(5,0)$, and we record: $f(1,0)=2$ and $f(5,0)=-2$.
We look for critical point on the interior of Boundary I:
Since $g(x)=f(x, 0)=3-x$, so $g^{\prime}=-1 \neq 0$.
No critical points in the interior of Boundary I.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$. We look for critical point on the interior of Boundary II:
Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$.
No critical points in the interior of Boundary II.
Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III:
Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$.
We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2=0$ implies $x=1$. So, $y=4$, and we selected the point (1,4), which was already in our list. No critical points in the interior of III.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(3) Our list of values is:

$$
f(1,0)=2 \quad f(1,4)=14 \quad f(5,0)=-2 .
$$

We conclude:
(a) Absolute maximum at $(1,4)$,
(b) Absolute minimum at $(5,0)$.

A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution: This problem can be solved by finding the local maximum of an appropriate function f.
First, the functions volume and area of a rectangular box with vertex at $(0,0,0)$ and sides x, y and z are:

$$
V(x, y, z)=x y z, \quad A(x, y, z)=2 x y+2 x z+2 y z
$$

Since $A(x, y, z)=A_{0}$, we obtain

$$
z=\frac{A_{0}-2 x y}{2(x+y)} \Rightarrow f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}
$$

A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution: Find the critical points of $f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}$.

$$
f_{x}=\frac{2 A_{0} y^{2}-4 x^{2} y^{2}-8 x y^{3}}{4(x+y)^{2}}, \quad f_{y}=\frac{2 A_{0} x^{2}-4 x^{2} y^{2}-8 y x^{3}}{4(x+y)^{2}}
$$

The conditions $f_{x}=0$ and $f_{y}=0$ and $x \neq 0, y \neq 0$ imply

$$
\left.\begin{array}{l}
A_{0}=2 x^{2}+4 x y, \\
A_{0}=2 y^{2}+4 x y,
\end{array}\right\} \Rightarrow x=y \Rightarrow A_{0}=2 x^{2}+4 x^{2}
$$

Then, $x_{0}=\sqrt{\frac{A_{0}}{6}}=y_{0}$. Since $z=\frac{A_{0}-2 x y}{2(x+y)}, z_{0}=\sqrt{\frac{A_{0}}{6}}$.

