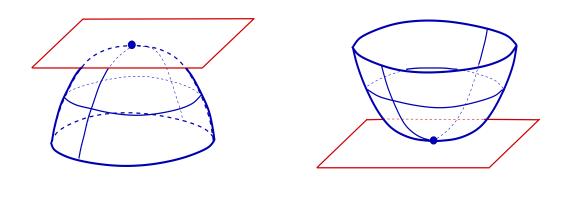


Definition of local extrema for functions of two variables

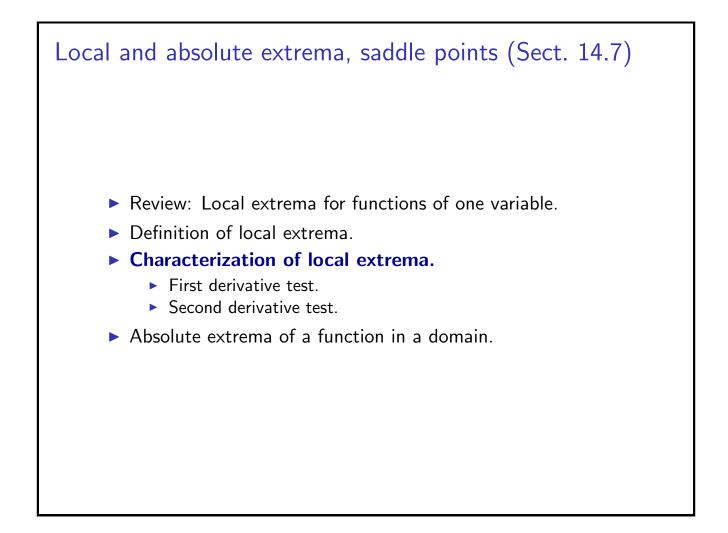
Definition

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local maximum* at the point $(a, b) \in D$ iff holds that $f(a, b) \ge f(x, y)$ for every point (x, y) in a neighborhood of (a, b).

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local minimum* at the point $(a, b) \in D$ iff holds that $f(a, b) \leq f(x, y)$ for every point (x, y) in a neighborhood of (a, b).



Definition of local extrema for functions of two variables Definition A differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has a saddle point at an interior point $(a, b) \in D$ iff in every open disk in D centered at (a, b) there always exist points (x, y) where f(a, b) < f(x, y) and other points (x, y) where f(a, b) > f(x, y).



Characterization of local extrema

Theorem (First Derivative Test)

If a differentiable function f has a local maximum or minimum at (a, b) then holds $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n} = \langle f_x, f_y, -1 \rangle = \langle 0, 0, -1 \rangle$.

Definition

The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ is a *critical point* of f iff $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark:

Critical points include local maxima, local minima, and saddle points.

Characterization of local extrema

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$.

Solution: The critical points are the points where ∇f vanishes. Since $\nabla f = \langle -2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, (a, b) = (0, 0).

Remark: Since $f(x, y) \leq 0$ for all $(x, y) \in \mathbb{R}^2$ and f(0, 0) = 0, then the point (0, 0) must be a local maximum of f.

Example

Find the critical points of the function $f(x, y) = x^2 - y^2$.

Solution: Since $\nabla f = \langle 2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, we again obtain (a, b) = (0, 0).

Characterization of local extrema

Theorem (Second derivative test)

Let (a, b) be a critical point of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$, that is, $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$. Assume that f has continuous second derivatives in an open disk in D with center in (a, b) and denote

 $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2.$

Then, the following statements hold:

- If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- If D < 0, then f(a, b) is a saddle point.
- If D = 0 the test is inconclusive.

Notation: The number D is called the *discriminant* of f at (a, b).

Characterization of local extrema

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

The only critical point is (a, b) = (0, 0).

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(0, 0) = -2$, $f_{yy}(0, 0) = 2$, and $f_{xy}(0, 0) = 0$, we get

$$D = (-2)(2) = -4 < 0 \implies$$
 saddle point at $(0,0)$.

Characterization of local extrema.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$abla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point. Remark: The whole axes x = 0 and y = 0 are critical points of f. We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(x, y) = 2y^2$, $f_{yy}(x, y) = 2x^2$, and $f_{xy}(x, y) = 4xy$, we obtain $f_{xx}(0,0) = 0$, $f_{yy}(0,0) = 0$, and $f_{xy}(0,0) = 0$, hence D = 0 and the test is inconclusive.

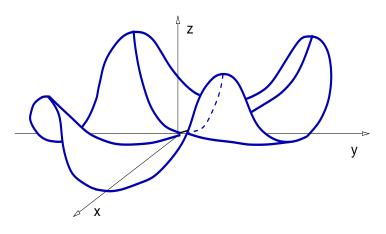
Characterization of local extrema.

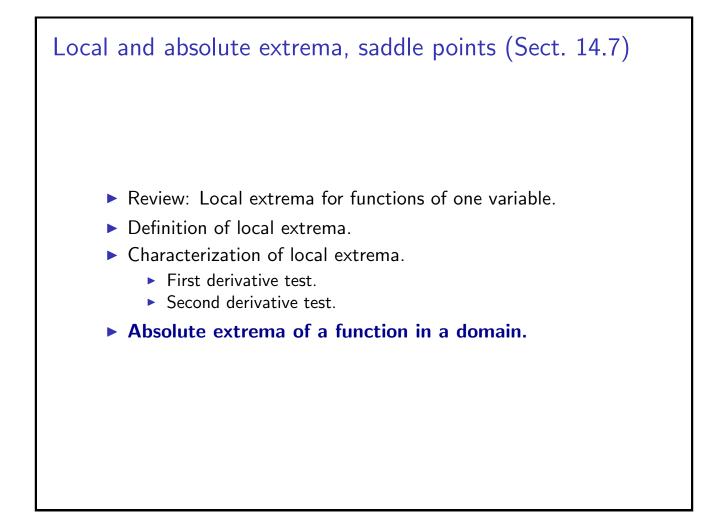
Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: Since $f(x, y) = x^2 y^2 \ge 0$ for all (x, y), and f(0, 0) = 0, then (0, 0) is a local minimum. (Also a global minimum.)

This is confirmed in the graph of f.





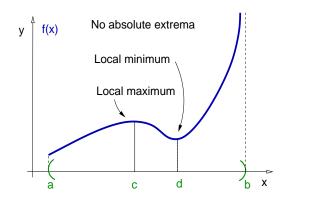
Absolute extrema of a function in a domain

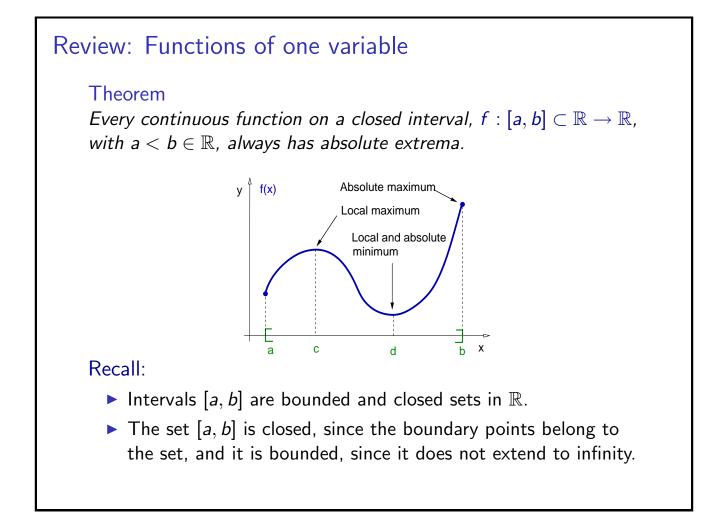
Definition

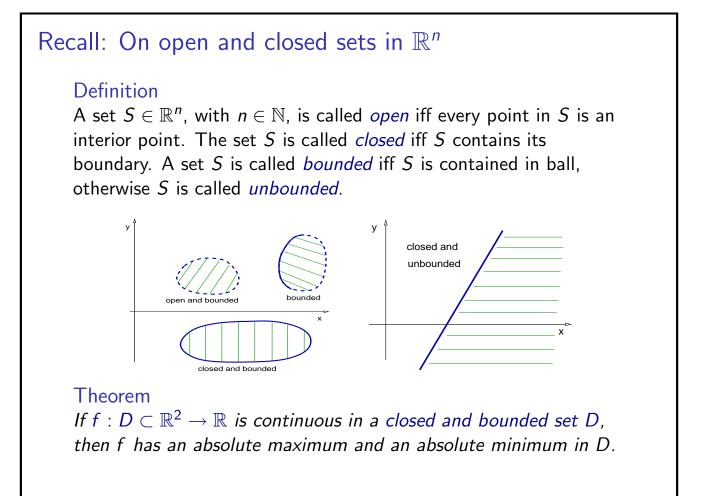
A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(a, b) \ge f(x, y)$ for all $(x, y) \in D$. A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(a, b) \le f(x, y)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

y f(x) Absolute maximum Local maximum Local and absolute minimum a c d b x Remark: Absolute extrema may not be defined on open intervals.





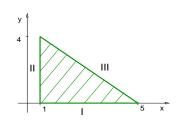


Absolute extrema on closed and bounded sets Problem: Find the absolute extrema of a function f : D ⊂ ℝ² → ℝ in a closed and bounded set D. Solution: Find every critical point of f in the interior of D and evaluate f at these points. Find the boundary points of D where f has local extrema, and evaluate f at these points. Look at the list of values for f found in the previous two steps. If f(x₀, y₀) is the biggest (smallest) value of f in the list above, then (x₀, y₀) is the absolute maximum (minimum) of f in D.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.



Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2)
angle = \langle 0, 0
angle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1)$$

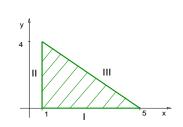
Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment $y = 0, x \in [1,5]$. We select the end points (1,0), (5,0), and we record: f(1,0) = 2 and f(5,0) = -2. We look for critical point on the interior of Boundary I: Since g(x) = f(x,0) = 3 - x, so $g' = -1 \neq 0$. No critical points in the interior of Boundary I.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.



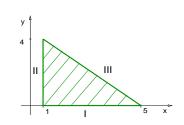
Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2 = 0implies x = 1. So, y = 4, and we selected the point (1, 4), which was already in our list. No critical points in the interior of III.

Absolute extrema on closed and bounded sets

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.



Solution:

(3) Our list of values is:

$$f(1,0) = 2$$
 $f(1,4) = 14$ $f(5,0) = -2$.

We conclude:

- (a) Absolute maximum at (1, 4),
- (b) Absolute minimum at (5, 0).

 \triangleleft

A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution: This problem can be solved by finding the local maximum of an appropriate function f.

First, the functions volume and area of a rectangular box with vertex at (0,0,0) and sides x, y and z are:

$$V(x, y, z) = xyz$$
, $A(x, y, z) = 2xy + 2xz + 2yz$.

Since $A(x, y, z) = A_0$, we obtain

$$z = rac{A_0 - 2xy}{2(x+y)} \quad \Rightarrow \quad f(x,y) = rac{A_0xy - 2x^2y^2}{2(x+y)}.$$

A maximization problem with a constraint

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution: Find the critical points of $f(x, y) = \frac{A_0 xy - 2x^2y^2}{2(x+y)}$.

$$f_x = \frac{2A_0y^2 - 4x^2y^2 - 8xy^3}{4(x+y)^2}, \quad f_y = \frac{2A_0x^2 - 4x^2y^2 - 8yx^3}{4(x+y)^2}$$

The conditions $f_x = 0$ and $f_y = 0$ and $x \neq 0$, $y \neq 0$ imply

$$\begin{array}{l} A_0 = 2x^2 + 4xy, \\ A_0 = 2y^2 + 4xy, \end{array} \} \quad \Rightarrow \quad x = y \quad \Rightarrow \quad A_0 = 2x^2 + 4x^2. \end{array}$$

Then, $x_0 = \sqrt{\frac{A_0}{6}} = y_0$. Since $z = \frac{A_0 - 2xy}{2(x+y)}$, $z_0 = \sqrt{\frac{A_0}{6}}$.