Review for Exam 2

- Sections 13.1-13.3. 14.1-14.6.
- 50 minutes.
- 5 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Section 14.6

Example

(a) Find the linear approximation $L(x, y)$ of the function $f(x, y)=\sin (2 x+3 y)+1$ at the point $(-3,2)$.
(b) Use the approximation above to estimate the value of $f(-2.9,2.1)$.

Solution:

(a) $L(x, y)=f_{x}(-3,2)(x+3)+f_{y}(-3,2)(y-2)+f(-3,2)$.

Since $f_{x}(x, y)=2 \cos (2 x+3 y)$ and $f_{y}(x, y)=3 \cos (2 x+3 y)$,

$$
f_{x}(-3,2)=2 \cos (-6+6)=2, \quad f_{y}(-3,2)=3 \cos (-6+6)=3,
$$

$$
f(-3,2)=\sin (-6+6)+1=1
$$

the linear approximation is $L(x, y)=2(x+3)+3(y-2)+1$.

Section 14.6

Example

(a) Find the linear approximation $L(x, y)$ of the function $f(x, y)=\sin (2 x+3 y)+1$ at the point $(-3,2)$.
(b) Use the approximation above to estimate the value of $f(-2.9,2.1)$.

Solution: Recall: $L(x, y)=2(x+3)+3(y-2)+1$.
(b) We use L to find the a linear approximation to $f(-2.9,2.1)$. We need to compute $L(-2.9,2.1)$.

$$
\begin{gathered}
L(-2.9,2.1)=2(-2.9+3)+3(2.1-2)+2 \\
L(-2.9,2.1)=2(0.1)+3(0.1)+1 \quad \Rightarrow \quad L(-2.9,2.1)=1.5
\end{gathered}
$$

Exact value is close to 1.479 .

Section 14.5

Example

(a) Find the gradient of $f(x, y, z)=\sqrt{x+2 y z}$.
(b) Find the directional derivative of f at $(0,2,1)$ in the direction given by $\langle 0,3,4\rangle$.
(c) Find the maximum rate of change of f at the point $(0,2,1)$.

Solution:
(a) $\nabla f(x, y, z)=\frac{1}{2 \sqrt{x+2 y z}}\langle 1,2 z, 2 y\rangle$.
(b) We evaluate the gradient above at $(0,2,1)$,

$$
\nabla f(0,2,1)=\frac{1}{2 \sqrt{0+4}}\langle 1,2,4\rangle=\frac{1}{4}\langle 1,2,4\rangle .
$$

Section 14.5

Example

(a) Find the gradient of $f(x, y, z)=\sqrt{x+2 y z}$.
(b) Find the directional derivative of f at $(0,2,1)$ in the direction given by $\langle 0,3,4\rangle$.
(c) Find the maximum rate of change of f at the point $(0,2,1)$.

Solution: (b) Recall: $\nabla f(0,2,1)=\frac{1}{4}\langle 1,2,4\rangle$.
We now need a unit vector parallel to $\langle 0,3,4\rangle$,

$$
\mathbf{u}=\frac{1}{\sqrt{9+16}}\langle 0,3,4\rangle=\frac{1}{5}\langle 0,3,4\rangle
$$

Then, $\left(D_{u} f\right)(0,2,1)=\frac{1}{4}\langle 1,2,4\rangle \cdot \frac{1}{5}\langle 0,3,4\rangle=\frac{1}{20}(6+16)=\frac{11}{10}$.
We obtain, $\left(D_{u} f\right)(0,2,1)=\frac{11}{10}$.

Section 14.5

Example

(a) Find the gradient of $f(x, y, z)=\sqrt{x+2 y z}$.
(b) Find the directional derivative of f at $(0,2,1)$ in the direction given by $\langle 0,3,4\rangle$.
(c) Find the maximum rate of change of f at the point $(0,2,1)$.

Solution:

(c) The maximum rate of change of f at a point is the magnitude of its gradient at that point, that is,

$$
|\nabla f(0,2,1)|=\frac{1}{4}|\langle 1,2,4\rangle|=\frac{1}{4} \sqrt{1+4+16}=\frac{\sqrt{21}}{4} .
$$

The maximum rate of change of f at $(0,2,1)$ is

$$
|\nabla f(0,2,1)|=\sqrt{21} / 4
$$

Section 14.4

Example

Find $\partial_{x y}\left(e^{-x y} \sin (x+y z)\right)$. (Do not simplify your answer.)
Solution: We first compute the x-derivative,

$$
\partial_{x}\left(e^{-x y} \sin (x+y z)\right)=-y e^{-x y} \sin (x+y z)+e^{-x y} \cos (x+y z)
$$

The second derivative is

$$
\begin{gathered}
\partial_{x y}\left(e^{-x y} \sin (x+y z)\right)=\partial_{y}\left(-y e^{-x y} \sin (x+y z)+e^{-x y} \cos (x+y z)\right) \\
=-e^{-x y} \sin (x+y z)+x y e^{-x y} \sin (x+y z)-y e^{-x y} \cos (x+y z) z \\
-x e^{-x y} \cos (x+y z)-e^{-x y} \sin (x+y z) z .
\end{gathered}
$$

Section 14.3

Example

Find any value of the constant a such that the function $f(x, y)=e^{-a x} \cos (y)-e^{-y} \cos (x)$ is solution of Laplace's equation $f_{x x}+f_{y y}=0$.

Solution:

$$
\begin{gathered}
f_{x}=-a e^{-a x} \cos (y)+e^{-y} \sin (x), f_{x x}=a^{2} e^{-a x} \cos (y)+e^{-y} \cos (x) . \\
f_{y}=-e^{-a x} \sin (y)+e^{-y} \cos (x), f_{y y}=-e^{-a x} \cos (y)-e^{-y} \cos (x) . \\
f_{x x}+f_{y y}=\left[a^{2} e^{-a x} \cos (y)+e^{-y} \cos (x)\right] \\
+\left[-e^{-a x} \cos (y)-e^{-y} \cos (x)\right] \\
f_{x x}+f_{y y}=\left(a^{2}-1\right) e^{-a x} \cos (y) .
\end{gathered}
$$

Function f is solution of $f_{x x}+f_{y y}=0$ iff $a= \pm 1$.

Section 14.2

Example

Compute the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2}(y)}{2 x^{2}+3 y^{2}}$.
Solution:
Since $x^{2} \leqslant 2 x^{2}+3 y^{2}$, that is, $\frac{x^{2}}{2 x^{2}+3 y^{2}} \leqslant 1$, the non-negative function $f(x, y)=\frac{x^{2} \sin ^{2}(y)}{2 x^{2}+3 y^{2}}$ satisfies the bounds

$$
0 \leqslant f(x, y) \leqslant \sin ^{2}(y)
$$

Since $\lim _{y \rightarrow 0} \sin ^{2}(y)=0$, the Sandwich Theorem implies that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2}(y)}{2 x^{2}+3 y^{2}}=0
$$

Section 13.3

Example

Reparametrize the curve $\mathbf{r}(t)=\left\langle\frac{3}{2} \sin \left(t^{2}\right), 2 t^{2}, \frac{3}{2} \cos \left(t^{2}\right)\right\rangle$ with respect to its arc length measured from $t=1$ in the direction of increasing t.

Solution:

We first compute the arc length function. We start with the derivative

$$
\mathbf{r}^{\prime}(t)=\left\langle 3 t \cos \left(t^{2}\right), 4 t,-3 \sin \left(t^{2}\right)\right\rangle
$$

We now need its magnitude,

$$
\begin{gathered}
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9 t^{2} \cos ^{2}\left(t^{2}\right)+16 t^{2}+9 \sin ^{2}\left(t^{2}\right)} \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9 t^{2}+16 t^{2}}=(\sqrt{9+16}) t \quad \Rightarrow \quad\left|\mathbf{r}^{\prime}(t)\right|=5 t
\end{gathered}
$$

Section 13.3

Example

Reparametrize the curve $\mathbf{r}(t)=\left\langle\frac{3}{2} \sin \left(t^{2}\right), 2 t^{2}, \frac{3}{2} \cos \left(t^{2}\right)\right\rangle$ with respect to its arc length measured from $t=1$ in the direction of increasing t.

Solution: Recall: $\left|\mathbf{r}^{\prime}(t)\right|=5 t$. The arc length function is

$$
s(t)=\int_{1}^{t} 5 \tau d \tau=\frac{5}{2}\left(\left.\tau^{2}\right|_{1} ^{t}\right)=\frac{5}{2}\left(t^{2}-1\right)
$$

Inverting this function for t^{2}, we obtain $t^{2}=\frac{2}{5} s+1$.
The reparametrization of $\mathbf{r}(t)$ is given by

$$
\hat{\mathbf{r}}(s)=\left\langle\frac{3}{2} \sin \left(\frac{2}{5} s+1\right), 2\left(\frac{2}{5} s+1\right), \frac{3}{2} \cos \left(\frac{2}{5} s+1\right)\right\rangle .
$$

