

Review: Differentiable functions of two variables

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: We need to compute the partial derivatives of f. $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$. They are continuous functions, then f is differentiable. The linear function L at (1, 2) is

$$L(x,y) = f_x(1,2)(x-1) + f_y(1,2)(y-2) + f(1,2).$$

That is, we need three numbers to find the linear function L: $f_x(1,2)$, $f_y(1,2)$, and f(1,2). These numbers are:

$$f_x(1,2) = 2, \quad f_y(1,2) = 4, \quad f(1,2) = 5.$$

Therefore, L(x, y) = 2(x - 1) + 4(y - 2) + 5.

 \triangleleft

Tangent planes and linear approximations (Sect. 14.6)
Review: Differentiable functions of two variables.
The tangent plane to the graph of a function.
The linear approximation of a differentiable function.
Bounds for the error of a linear approximation.
The differential of a function.
Review: Scalar functions of one variable.
Scalar functions of more than one variable.

The tangent plane to the graph of a function

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

2(x-1) + 4(y-2) - (z-5) = 0.

This is a plane passing through $\tilde{P}_0 = (1, 2, 5)$ with normal vector $\mathbf{n} = \langle 2, 4, -1 \rangle$. Analogously, the function

$$L(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0)$$

is a plane in \mathbb{R}^3 . Using the notation z = L(x, y) we obtain

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0$$

This is a plane passing through $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0))$ with normal vector $\mathbf{n} = \langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$.

The tangent plane to the graph of a function

Theorem

The plane tangent to the graph of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point (x_0, y_0) is given by

$$L(x,y) = f_x(x_0,y_0) (x - x_0) + f_y(x_0,y_0) (y - y_0) + f(x_0,y_0).$$

Since at (x_0, y_0) the function *L* satisfies that

$$L(x_0, y_0) = f(x_0, y_0).$$

then the plane contains the point $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0)).$

We only need to find its normal vector \mathbf{n} .

The tangent plane to the graph of a function.

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = rac{1}{1+(x+2y)^2}, \quad f_y(x,y) = rac{2}{1+(x+2y)^2},$$

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 . The plane L(x, y) at (1, 0) is given by

$$L(x,y) = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0),$$

where $f(1,0) = \arctan(1) = \pi/4$, $f_x(1,0) = 1/2$, $f_y(1,0) = 1$. Then, $L(x,y) = \frac{1}{2}(x-1) + y + \frac{\pi}{4}$.

The linear approximation of a differentiable function

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

$$L(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0).$$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2,1). Solution: $L(x, y) = f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) + f(2, 1)$. We need three numbers: f(2, 1), $f_x(2, 1)$, and $f_y(2, 1)$. These are: f(2, 1) = 3, $f_x(2, 1) = -2/3$, and $f_y(2, 1) = -4/3$. Then the plane is given by $L(x, y) = -\frac{2}{3}(x - 2) - \frac{4}{3}(y - 1) + 3$.

Bounds for the error of a linear approximation

Theorem

Assume that the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has first and second partial derivatives continuous on an open set containing a rectangular region $R \subset D$ centered at the point (x_0, y_0) . If $M \in \mathbb{R}$ is the upper bound for $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ in R, then the error E(x, y) = f(x, y) - L(x, y) satisfies the inequality

$$|E(x,y)| \leq \frac{1}{2} M (|x-x_0|+|y-y_0|)^2,$$

where L(x, y) is the linearization of f at (x_0, y_0) , that is,

$$L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$$

Bounds for the error of a linear approximation

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 : |x-1| < 0.1, |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Therefore, we can take M = 2.

Then the formula $|E(x,y)| \leq \frac{1}{2} M (|x-x_0|+|y-y_0|)^2$, implies

$$|E(x,y)| \leq (|x-1|+|y-2|)^2 < (0.1+0.1)^2 = 0.04,$$

 \triangleleft

that is |E(x, y)| < 0.04.

Since f(1,2) = 5, the % relative error is $100 \frac{E(x,y)}{f(1,2)} \leq 0.8\%$.

Tangent planes and linear approximations (Sect. 14.6)

- Review: Differentiable functions of two variables.
- ▶ The tangent plane to the graph of a function.
- ► The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

Review: Differential of functions of one variable. Definition The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function $df(x) = L(x) - f(x_0).$ Remark: The linear approximation of f(x) at x_0 is the line given by $L(x) = f'(x_0)(x - x_0) + f(x_0)$. Therefore у $df(x) = f'(x_0)(x - x_0).$ L(x) $\Delta \mathbf{f}$ Denoting $dx = x - x_0$, $f(x_0)$ $df = f'(x_0) dx.$ x₀ х х $dx = \triangle x$

Differential of functions of more than one variable

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

Remark: The linear approximation of f(x, y) at (x_0, y_0) is the plane $L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$. Therefore $df(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$. Denoting $dx = x - x_0$ and $dy = (y - y_0)$ we obtain the usual expression

$$df = f_x(x_0, y_0) \, dx + f_y(x_0, y_0) \, dy$$

Therefore, df and L are similar concepts: The linear approximation of a differentiable function f.

Differential of functions of more than one variable

Example

Compute the df of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this df for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

The partial derivatives f_x and f_y are given by

$$f_x(x,y) = \frac{2x}{1+x^2+y^2}, \qquad f_y(x,y) = \frac{2y}{1+x^2+y^2}.$$

Therefore, $f_x(1,1) = \frac{2}{3} = f_y(1,1)$. Then $df = \frac{2}{3} dx + \frac{2}{3} dy$. Evaluating this differential at dx = 0.1 and dy = 0.2 we obtain

$$df = \frac{2}{3}\frac{1}{10} + \frac{2}{3}\frac{2}{10} = \frac{2}{3}\frac{3}{10} \implies df = \frac{1}{5}.$$

Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution:

The data of the problem is: $h_0 = 12cm$, $r_0 = 4cm$, dr = 0.04cm and dh = 0.08cm. The function to consider is the mass of the cylinder, $M = \rho V$, where $\rho = 2.7gr/cm^3$ is the aluminum density and V is the volume of the cylinder, $V(r, h) = \pi r^2 h$.

The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right], \quad (\text{recall } dh = 2dr.)$$

h₀= 12

dr = 0.04

Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right].$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$, that is,

 $dV = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh.$

Since $V(r, h) = \pi r^2 h$, we obtain $dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh$.

Therefore, $dV = 16.1 \text{ cm}^3$. Since $dM = \rho dV$, a linear estimate for the aluminum needed to build the can is dM = 43.47 gr.