
Tangent planes and linear approximations (Sect. 14.6)

I Review: Differentiable functions of two variables.

I The tangent plane to the graph of a function.

I The linear approximation of a differentiable function.

I Bounds for the error of a linear approximation.
I The differential of a function.

I Review: Scalar functions of one variable.
I Scalar functions of more than one variable.

Review: Differentiable functions of two variables.

Recall: The graph of a differentiable function f : D ⊂ R2 → R is
approximated by a plane at every point in D.

(And in its whole domain.) 
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L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Theorem
If the partial derivatives fx and fy of a function f : D ⊂ R2 → R are
continuous in an open region R ⊂ D, then f is differentiable in R.



Review: Differentiable functions of two variables

Example

Show that the function f (x , y) = x2 + y2 is differentiable for all
(x , y) ∈ R2. Furthermore, find the linear function L, mentioned in
the definition of a differentiable function, at the point (1, 2).

Solution: We need to compute the partial derivatives of f .
fx(x , y) = 2x and fy (x , y) = 2y . They are continuous functions,
then f is differentiable. The linear function L at (1, 2) is

L(x , y) = fx(1, 2) (x − 1) + fy (1, 2) (y − 2) + f (1, 2).

That is, we need three numbers to find the linear function L:
fx(1, 2), fy (1, 2), and f (1, 2). These numbers are:

fx(1, 2) = 2, fy (1, 2) = 4, f (1, 2) = 5.

Therefore, L(x , y) = 2(x − 1) + 4(y − 2) + 5. C
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The tangent plane to the graph of a function

Remark:
The function L(x , y) = 2(x − 1) + 4(y − 2) + 5 is a plane in R3.
We usually write down the equation of a plane using the notation
z = L(x , y), that is, z = 2(x − 1) + 4(y − 2) + 5, or equivalently

2(x − 1) + 4(y − 2)− (z − 5) = 0.

This is a plane passing through P̃0 = (1, 2, 5) with normal vector
n = 〈2, 4,−1〉. Analogously, the function

L(x , y) = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0) + f (x0, y0)

is a plane in R3. Using the notation z = L(x , y) we obtain

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)− (z − f (x0, y0)) = 0.

This is a plane passing through P̃0 = (x0, y0, f (x0, y0)) with normal
vector n = 〈fx(x0, y0), fy (x0, y0),−1〉.

The tangent plane to the graph of a function

Theorem
The plane tangent to the graph of a differentiable function
f : D ⊂ R2 → R at the point (x0, y0) is given by

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Proof
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Since at (x0, y0) the function L
satisfies that

L(x0, y0) = f (x0, y0).

then the plane contains the point
P̃0 = (x0, y0, f (x0, y0)).

We only need to find its normal
vector n.



The tangent plane to the graph of a function.

The vector n normal to the plane
L(x , y) is a vector perpendicular
to the surface z = f (x , y) at
P0 = (x0, y0).
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This surface is the level surface F (x , y , z) = 0 of the function
F (x , y , z) = f (x , y)− z . A vector normal to this level surface is its
gradient ∇F . That is, ∇F = 〈Fx ,Fy ,Fz〉 = 〈fx , fy ,−1〉.

Therefore, the normal to the tangent plane L(x , y) at the point P0

is n = 〈fx(x0, y0), fy (x0, y0),−1〉. Recall that the plane contains
the point P̃0 = (x0, y0, f (x0, y0)). The equation for the plane is

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)− (z − f (x0, y0)) = 0.

The tangent plane to the graph of a function.

Example

Show that f (x , y) = arctan(x + 2y) is differentiable and find the
plane tangent to f (x , y) at (1, 0).

Solution: The partial derivatives of f are given by

fx(x , y) =
1

1 + (x + 2y)2
, fy (x , y) =

2

1 + (x + 2y)2
.

These functions are continuous in R2, so f (x , y) is differentiable at
every point in R2. The plane L(x , y) at (1, 0) is given by

L(x , y) = fx(1, 0)(x − 1) + fy (1, 0)(y − 0) + f (1, 0),

where f (1, 0) = arctan(1) = π/4, fx(1, 0) = 1/2, fy (1, 0) = 1.

Then, L(x , y) =
1

2
(x − 1) + y +

π

4
. C
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The linear approximation of a differentiable function

Definition
The linear approximation of a differentiable function
f : D ⊂ R2 → R at the point (x0, y0) ∈ D is the plane

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Example

Find the linear approximation of f =
√

17− x2 − 4y2 at (2, 1).

Solution: L(x , y) = fx(2, 1)(x − 2) + fy (2, 1)(y − 1) + f (2, 1).

We need three numbers: f (2, 1), fx(2, 1), and fy (2, 1).

These are: f (2, 1) = 3, fx(2, 1) = −2/3, and fy (2, 1) = −4/3.

Then the plane is given by L(x , y) = −2

3
(x − 2)− 4

3
(y − 1) + 3.C
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Bounds for the error of a linear approximation

Theorem
Assume that the function f : D ⊂ R2 → R has first and second
partial derivatives continuous on an open set containing a
rectangular region R ⊂ D centered at the point (x0, y0).
If M ∈ R is the upper bound for |fxx |, |fyy |, and |fxy | in R, then the
error E (x , y) = f (x , y)− L(x , y) satisfies the inequality

|E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
,

where L(x , y) is the linearization of f at (x0, y0), that is,

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).



Bounds for the error of a linear approximation

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.
Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. C

Since f (1, 2) = 5, the % relative error is 100
E (x , y)

f (1, 2)
6 0.8%.
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Review: Differential of functions of one variable.

Definition
The differential at x0 ∈ D of a differentiable function
f : D ⊂ R → R is the linear function

df (x) = L(x)− f (x0).

Remark: The linear approximation of f (x) at x0 is the line given
by L(x) = f ′(x0) (x − x0) + f (x0).

Therefore

df (x) = f ′(x0) (x − x0).

Denoting dx = x − x0,

df = f ′(x0) dx .

xx0

L(x)

f(x)y

x

df

dx = x

f

f(x  )0

Differential of functions of more than one variable

Definition
The differential at (x0, y0) ∈ D of a differentiable function
f : D ⊂ R2 → R is the linear function

df (x , y) = L(x , y)− f (x0, y0).

Remark: The linear approximation of f (x , y) at (x0, y0) is the
plane L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Therefore df (x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0).

Denoting dx = x − x0 and dy = (y − y0) we obtain the usual
expression

df = fx(x0, y0) dx + fy (x0, y0) dy .

Therefore, df and L are similar concepts: The linear approximation
of a differentiable function f .



Differential of functions of more than one variable

Example

Compute the df of the function f (x , y) = ln(1 + x2 + y2) at the
point (1, 1). Evaluate this df for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x0, y0) is given by

df = fx(x0, y0)dx + fy (x0, y0)dy .

The partial derivatives fx and fy are given by

fx(x , y) =
2x

1 + x2 + y2
, fy (x , y) =

2y

1 + x2 + y2
.

Therefore, fx(1, 1) =
2

3
= fy (1, 1). Then df =

2

3
dx +

2

3
dy .

Evaluating this differential at dx = 0.1 and dy = 0.2 we obtain

df =
2

3

1

10
+

2

3

2

10
=

2

3

3

10
⇒ df =

1

5
. C

Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to
build a closed cylindrical can with internal diameter of 8cm and
height of 12cm if the aluminum is 0.04cm thick.

Solution:

The data of the problem is: h0 = 12cm,
r0 = 4cm, dr = 0.04cm and dh = 0.08cm.
The function to consider is the mass of the
cylinder, M = ρV , where ρ = 2.7gr/cm3 is the
aluminum density and V is the volume of the
cylinder,

V (r , h) = πr2h.

0

0

h  = 12

r  = 4

dr = 0.04

The metal to build the can is given by

∆M = ρ
[
V (r + dr , h + dh)− V (r , h)

]
,

(
recall dh = 2dr .

)



Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to
build a closed cylindrical can with internal diameter of 8cm and
height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

∆M = ρ
[
V (r + dr , h + dh)− V (r , h)

]
.

A linear approximation to ∆V = V (r + dr , h + dh)− V (r , h) is
dV = Vr dr + Vh dh, that is,

dV = Vr (r0, h0)dr + Vh(r0, h0)dh.

Since V (r , h) = πr2h, we obtain dV = 2πr0h0 dr + πr2
0 dh.

Therefore, dV = 16.1 cm3. Since dM = ρ dV , a linear estimate for
the aluminum needed to build the can is dM = 43.47 gr . C


