- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Review: Differentiable functions of two variables.

Recall: The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Theorem

If the partial derivatives f_{x} and f_{y} of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Review: Differentiable functions of two variables

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.

Solution: We need to compute the partial derivatives of f. $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$. They are continuous functions, then f is differentiable. The linear function L at $(1,2)$ is

$$
L(x, y)=f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)+f(1,2)
$$

That is, we need three numbers to find the linear function L : $f_{x}(1,2), f_{y}(1,2)$, and $f(1,2)$. These numbers are:

$$
f_{x}(1,2)=2, \quad f_{y}(1,2)=4, \quad f(1,2)=5
$$

Therefore, $L(x, y)=2(x-1)+4(y-2)+5$.

Tangent planes and linear approximations (Sect. 14.6)

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

The tangent plane to the graph of a function
Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=(1,2,5)$ with normal vector $\mathbf{n}=\langle 2,4,-1\rangle$. Analogously, the function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is a plane in \mathbb{R}^{3}. Using the notation $z=L(x, y)$ we obtain

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ with normal vector $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$.

The tangent plane to the graph of a function

Theorem

The plane tangent to the graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right)$ is given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Proof

Since at $\left(x_{0}, y_{0}\right)$ the function L satisfies that

$$
L\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right) .
$$

then the plane contains the point $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.
We only need to find its normal vector \mathbf{n}.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle f_{x}, f_{y},-1\right\rangle$.
Therefore, the normal to the tangent plane $L(x, y)$ at the point P_{0} is $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$. Recall that the plane contains the point $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. The equation for the plane is

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0 .
$$

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}}
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}. The plane $L(x, y)$ at $(1,0)$ is given by

$$
L(x, y)=f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)+f(1,0)
$$

where $f(1,0)=\arctan (1)=\pi / 4, f_{x}(1,0)=1 / 2, f_{y}(1,0)=1$.
Then, $L(x, y)=\frac{1}{2}(x-1)+y+\frac{\pi}{4}$.

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

The linear approximation of a differentiable function

Definition

The linear approximation of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example

Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.
Solution: $L(x, y)=f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1)$.
We need three numbers: $f(2,1), f_{x}(2,1)$, and $f_{y}(2,1)$.
These are: $f(2,1)=3, f_{x}(2,1)=-2 / 3$, and $f_{y}(2,1)=-4 / 3$.
Then the plane is given by $L(x, y)=-\frac{2}{3}(x-2)-\frac{4}{3}(y-1)+3 . \triangleleft$

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Bounds for the error of a linear approximation

Theorem

Assume that the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has first and second partial derivatives continuous on an open set containing a rectangular region $R \subset D$ centered at the point $\left(x_{0}, y_{0}\right)$. If $M \in \mathbb{R}$ is the upper bound for $\left|f_{x x}\right|,\left|f_{y y}\right|$, and $\left|f_{x y}\right|$ in R, then the error $E(x, y)=f(x, y)-L(x, y)$ satisfies the inequality

$$
|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}
$$

where $L(x, y)$ is the linearization of f at $\left(x_{0}, y_{0}\right)$, that is,

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Bounds for the error of a linear approximation

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.
Therefore, we can take $M=2$.
Then the formula $|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}$, implies

$$
|E(x, y)| \leqslant(|x-1|+|y-2|)^{2}<(0.1+0.1)^{2}=0.04
$$

that is $|E(x, y)|<0.04$.
Since $f(1,2)=5$, the \% relative error is $100 \frac{E(x, y)}{f(1,2)} \leqslant 0.8 \%$.

Tangent planes and linear approximations (Sect. 14.6)

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Review: Differential of functions of one variable.

Definition

The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Remark: The linear approximation of $f(x)$ at x_{0} is the line given by $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Therefore

$$
d f(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Denoting $d x=x-x_{0}$,

$$
d f=f^{\prime}\left(x_{0}\right) d x
$$

Differential of functions of more than one variable

Definition

The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Remark: The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the plane $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)$.
Therefore $d f(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
Denoting $d x=x-x_{0}$ and $d y=\left(y-y_{0}\right)$ we obtain the usual expression

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

Therefore, $d f$ and L are similar concepts: The linear approximation of a differentiable function f.

Differential of functions of more than one variable

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.

Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

The partial derivatives f_{x} and f_{y} are given by

$$
f_{x}(x, y)=\frac{2 x}{1+x^{2}+y^{2}}, \quad f_{y}(x, y)=\frac{2 y}{1+x^{2}+y^{2}} .
$$

Therefore, $f_{x}(1,1)=\frac{2}{3}=f_{y}(1,1)$. Then $d f=\frac{2}{3} d x+\frac{2}{3} d y$.
Evaluating this differential at $d x=0.1$ and $d y=0.2$ we obtain

$$
d f=\frac{2}{3} \frac{1}{10}+\frac{2}{3} \frac{2}{10}=\frac{2}{3} \frac{3}{10} \Rightarrow d f=\frac{1}{5}
$$

Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution:

The data of the problem is: $h_{0}=12 \mathrm{~cm}$,
$r_{0}=4 \mathrm{~cm}, d r=0.04 \mathrm{~cm}$ and $d h=0.08 \mathrm{~cm}$.
The function to consider is the mass of the cylinder, $M=\rho V$, where $\rho=2.7 \mathrm{gr} / \mathrm{cm}^{3}$ is the aluminum density and V is the volume of the cylinder,

$$
V(r, h)=\pi r^{2} h
$$

The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)], \quad(\text { recall } d h=2 d r .)
$$

Differential of functions of more than one variable

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)] .
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$, that is,

$$
d V=V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h .
$$

Since $V(r, h)=\pi r^{2} h$, we obtain $d V=2 \pi r_{0} h_{0} d r+\pi r_{0}^{2} d h$.
Therefore, $d V=16.1 \mathrm{~cm}^{3}$. Since $d M=\rho d V$, a linear estimate for the aluminum needed to build the can is $d M=43.47 \mathrm{gr}$.

