Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}\right\rangle$ is given by the limit

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right] .
$$

Remarks: The line by $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}\right\rangle$ tangent to \mathbf{u} is $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{u}$.
(a) Equivalently, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}[f(\mathbf{r}(t))-f(\mathbf{r}(0))]$.
(b) If $\hat{f}(t)=f(\mathbf{r}(t))$, then holds $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\hat{f}^{\prime}(0)$.

Directional derivatives generalize partial derivatives

Example

The partial derivatives f_{x} and f_{y} are particular cases of directional derivatives $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]$:

- $\mathbf{u}=\langle 1,0\rangle=\mathbf{i}$, then $\left(D_{\mathrm{i}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right)$.
- $\mathbf{u}=\langle 0,1\rangle=\mathbf{j}$, then $\left(D_{\mathbf{j}} f\right)_{P_{0}}=f_{y}\left(x_{0}, y_{0}\right)$.

Directional derivatives generalize partial derivatives

Example

Find the derivative of $f(x, y)=x^{2}+y^{2}$ at $P_{0}=(1,0)$ in the direction of $\theta=\pi / 6$ counterclockwise from the x-axis.

Solution: A unit vector in the direction of θ is $\mathbf{u}=\langle\cos (\theta), \sin (\theta)\rangle$.
For $\theta=\pi / 6$ we get $\mathbf{u}=\langle 1 / 2, \sqrt{3} / 2\rangle$.
The line containing the vector $\mathbf{r}_{0}=\langle 1,0\rangle$ and tangent to \mathbf{u} is

$$
\mathbf{r}(t)=\langle 1,0\rangle+\frac{t}{2}\langle 1, \sqrt{3}\rangle \quad \Rightarrow \quad x(t)=1+\frac{t}{2}, \quad y(t)=\frac{\sqrt{3} t}{2} .
$$

Hence $\hat{f}(t)=f(x(t), y(t))$ is given by

$$
\hat{f}(t)=\left(1+\frac{t}{2}\right)^{2}+\frac{3 t^{2}}{4} \Rightarrow \hat{f}(t)=1+t+t^{2}
$$

Since $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\hat{f}^{\prime}(0)$, and $\hat{f}^{\prime}(t)=1+2 t$, then $\left(D_{\mathbf{u}} f\right)_{P_{0}}=1 . \quad \triangleleft$

Directional derivative of functions of two variables

Remark: The condition $|\mathbf{u}|=1$ in the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$ implies that the parameter t is the distance between the points $(x(t), y(t))=\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)$ and $\left(x_{0}, y_{0}\right)$.

In other words: The arc length function of the line is $\ell=t$.
Proof:

$$
d=\left|\left\langle x-x_{0}, y-y_{0}\right\rangle\right|=\left|\left\langle u_{x} t, u_{y} t\right\rangle\right|=|t||\mathbf{u}|, \quad \Rightarrow \quad d=|t|
$$

Equivalently,

$$
\mathbf{r}^{\prime}(t)=\mathbf{u} \quad \Rightarrow \quad \ell=\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau=\int_{0}^{t} d \tau \quad \Rightarrow \quad \ell=t
$$

Remark: The directional derivative $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ is the pointwise rate of change of f with respect to the distance along the line parallel to \mathbf{u} passing through P_{0}.

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative and partial derivatives

Remark: The directional derivative $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ is the derivative of f along the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$.

Theorem
If the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $P_{0}=\left(x_{0}, y_{0}\right)$ and $\mathbf{u}=\left\langle u_{x}, u_{y}\right\rangle$ is a unit vector, then

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y} .
$$

Directional derivative and partial derivatives

Proof:

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations: $x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t$;
Denote f evaluated along the line as $\hat{f}(t)=f(x(t), y(t))$.
Now, on the one hand, $\hat{f}^{\prime}(0)=\left(D_{\mathbf{u}} f\right)_{P_{0}}$, since

$$
\begin{gathered}
\hat{f}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{1}{t}[\hat{f}(t)-\hat{f}(0)] \\
\hat{f}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]=D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)
\end{gathered}
$$

On the other hand, the chain rule implies:

$$
\hat{f}^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+f_{y}\left(x_{0}, y_{0}\right) y^{\prime}(0)
$$

Therefore, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.

Directional derivative and partial derivatives

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.
We now use the formula $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.
That is, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\cos \left(x_{0}+3 y_{0}\right)(1 / \sqrt{5})+3 \cos \left(x_{0}+3 y_{0}\right)(2 / \sqrt{5})$.
Equivalently, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(7 / \sqrt{5}) \cos \left(x_{0}+3 y_{0}\right)$.
Then, $\left(D_{\mathrm{u}} f\right)_{P_{0}}=(7 / \sqrt{5}) \cos (13)$.

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative of functions of three variables

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ is given by the limit

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t, z_{0}+u_{z} t\right)-f\left(x_{0}, y_{0}, z_{0}\right)\right] .
$$

Theorem

If the function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ is a unit vector, then

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}, z_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) u_{y}+f_{z}\left(x_{0}, y_{0}, z_{0}\right) u_{z}
$$

Directional derivative of functions of three variables

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point $P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.
Solution: We first find a unit vector along \mathbf{v},

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u}=\frac{1}{\sqrt{6}}\langle 2,1,1\rangle .
$$

Then, $\left(D_{\mathbf{u}} f\right)$ is given by $\left(D_{\mathbf{u}} f\right)=(2 x) u_{x}+(4 y) u_{y}+(6 z) u_{z}$.
We conclude, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(6) \frac{2}{\sqrt{6}}+(8) \frac{1}{\sqrt{6}}+(6) \frac{1}{\sqrt{6}}$,
that is, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\frac{26}{\sqrt{6}}$.

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

The gradient vector and directional derivatives

Remark: The directional derivative of a function can be written in terms of a dot product.
(a) In the case of 2 variable functions: $D_{\mathbf{u}} f=f_{x} u_{x}+f_{y} u_{y}$

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}, \quad \text { with } \quad \nabla f=\left\langle f_{x}, f_{y}\right\rangle
$$

(b) In the case of 3 variable functions: $D_{\mathbf{u}} f=f_{x} u_{x}+f_{y} u_{y}+f_{z} u_{z}$,

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}, \quad \text { with } \quad \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle .
$$

The gradient vector and directional derivatives

Definition

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.
The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$.

Notation:

- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}$.
- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}$.

Theorem
If $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3$, is a differentiable function and \mathbf{u} is a unit vector, then,

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u} .
$$

The gradient vector and directional derivatives

Example

Find the gradient vector at any point in the domain of the function $f(x, y)=x^{2}+y^{2}$.

Solution: The gradient is $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$, that is, $\nabla f=\langle 2 x, 2 y\rangle . \triangleleft$

Remark:
$\nabla f=2 \mathbf{r}$, with $\mathbf{r}=\langle x, y\rangle$.

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Properties of the the gradient vector

Remark: If θ is the angle between ∇f and \mathbf{u}, then holds

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u} \quad \Rightarrow \quad D_{\mathbf{u}} f=|\nabla f| \cos (\theta)
$$

The formula above implies:

- The function f increases the most rapidly when \mathbf{u} is in the direction of ∇f, that is, $\theta=0$. The maximum increase rate of f is $|\nabla f|$.
- The function f decreases the most rapidly when \mathbf{u} is in the direction of $-\nabla f$, that is, $\theta=\pi$. The maximum decrease rate of f is $-|\nabla f|$.
- Since the function f does not change along level curve or surfaces, that is, $D_{\mathbf{u}} f=0$, then ∇f is perpendicular to the level curves or level surfaces.

Properties of the the gradient vector

Example

Find the direction of maximum increase of the function $f(x, y)=x^{2} / 4+y^{2} / 9$ at an arbitrary point (x, y), and also at the points $(1,0)$ and $(0,1)$.

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle
$$

At the points $(1,0)$ and $(0,1)$ we obtain, respectively,

$$
\nabla f=\left\langle\frac{1}{2}, 0\right\rangle . \quad \nabla f=\left\langle 0, \frac{2}{9}\right\rangle
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point
$P_{0}=(1,-3 \sqrt{3} / 2)$.
Solution: We first verify that P_{0} belongs to the level curve $f(x, y)=1$. This is the case, since

$$
\frac{1}{4}+\frac{(9)(3)}{4} \frac{1}{9}=1
$$

The equation of the line we look for is

$$
\mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\left\langle v_{x}, v_{y}\right\rangle
$$

where $\mathbf{v}=\left\langle v_{x}, v_{y}\right\rangle$ is tangent to the level curve $f(x, y)=1$ at P_{0}.

Properties of the the gradient vector

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point
$P_{0}=(1,-3 \sqrt{3} / 2)$.
Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle
$$

Therefore,

$$
0=\mathbf{v} \cdot(\nabla f)_{P_{0}} \Rightarrow \frac{1}{2} v_{x}=\frac{1}{\sqrt{3}} v_{y} \quad \Rightarrow \quad \mathbf{v}=\langle 2, \sqrt{3}\rangle .
$$

The line is $\mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\langle 2, \sqrt{3}\rangle$.

Properties of the the gradient vector

$\nabla f=\left\langle\frac{1}{2}, 0\right\rangle, \quad \nabla f=\left\langle 0, \frac{2}{9}\right\rangle$,
$\mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\langle 2, \sqrt{3}\rangle$.

Further properties of the the gradient vector

Theorem
If f, g are differentiable scalar valued vector functions, $g \neq 0$, and $k \in R$ any constant, then holds,
(a) $\nabla(k f)=k(\nabla f)$;
(b) $\nabla(f \pm g)=\nabla f \pm \nabla g$;
(c) $\nabla(f g)=(\nabla f) g+f(\nabla g)$;
(d) $\nabla\left(\frac{f}{g}\right)=\frac{(\nabla f) g-f(\nabla g)}{g^{2}}$.

