

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y \rangle$ is given by the limit

$$(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)].$$

Remarks: The line by $\mathbf{r}_0 = \langle x_0, y_0 \rangle$ tangent to \mathbf{u} is $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{u}$.

- (a) Equivalently, $(D_{\mathbf{u}}f)_{P_0} = \lim_{t \to 0} \frac{1}{t} [f(\mathbf{r}(t)) f(\mathbf{r}(0))].$
- (b) If $\hat{f}(t) = f(\mathbf{r}(t))$, then holds $(D_{\mathbf{u}}f)_{P_0} = \hat{f}'(0)$.

Directional derivatives generalize partial derivatives

Example

Find the derivative of $f(x, y) = x^2 + y^2$ at $P_0 = (1, 0)$ in the direction of $\theta = \pi/6$ counterclockwise from the x-axis.

Solution: A unit vector in the direction of θ is $\mathbf{u} = \langle \cos(\theta), \sin(\theta) \rangle$. For $\theta = \pi/6$ we get $\mathbf{u} = \langle 1/2, \sqrt{3}/2 \rangle$.

The line containing the vector $\textbf{r}_0=\langle 1,0\rangle$ and tangent to u is

$$\mathbf{r}(t) = \langle 1, 0
angle + rac{t}{2} \langle 1, \sqrt{3}
angle \quad \Rightarrow \quad x(t) = 1 + rac{t}{2}, \quad y(t) = rac{\sqrt{3} t}{2}.$$

Hence $\hat{f}(t) = f(x(t), y(t))$ is given by

$$\hat{f}(t)=\left(1+rac{t}{2}
ight)^2+rac{3t^2}{4} \quad \Rightarrow \quad \hat{f}(t)=1+t+t^2.$$

Since $(D_{u}f)_{P_{0}} = \hat{f}'(0)$, and $\hat{f}'(t) = 1 + 2t$, then $(D_{u}f)_{P_{0}} = 1$.

Directional derivative of functions of two variables

Remark: The condition $|\mathbf{u}| = 1$ in the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$ implies that the parameter t is the distance between the points $(x(t), y(t)) = (x_0 + u_x t, y_0 + u_y t)$ and (x_0, y_0) .

In other words: The arc length function of the line is $\ell = t$.

Proof:

$$d = |\langle x - x_0, y - y_0 \rangle| = |\langle u_x t, u_y t \rangle| = |t| |\mathbf{u}|, \quad \Rightarrow \quad d = |t|.$$

Equivalently,

$$\mathbf{r}'(t) = \mathbf{u} \quad \Rightarrow \quad \ell = \int_0^t |\mathbf{r}'(\tau)| \, d\tau = \int_0^t d\tau \quad \Rightarrow \quad \ell = t.$$

Remark: The directional derivative $(D_{\mathbf{u}}f)_{P_0}$ is the pointwise rate of change of f with respect to the distance along the line parallel to \mathbf{u} passing through P_0 .

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- ► Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative and partial derivatives

Proof:

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$;

Denote f evaluated along the line as $\hat{f}(t) = f(x(t), y(t))$. Now, on the one hand, $\hat{f}'(0) = (D_{\mathbf{u}}f)_{P_0}$, since

$$\hat{f}'(0) = \lim_{t \to 0} \frac{1}{t} \left[\hat{f}(t) - \hat{f}(0) \right]$$

$$\hat{f}'(0) = \lim_{t\to 0} \frac{1}{t} \big[f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0) \big] = D_{\mathbf{u}} f(x_0, y_0).$$

On the other hand, the chain rule implies:

$$\hat{f}'(0) = f_x(x_0, y_0) \, x'(0) + f_y(x_0, y_0) \, y'(0).$$

Therefore, $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y$.

Directional derivative and partial derivatives

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

Solution: We need to find a unit vector in the direction of **v**. Such vector is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle$. We now use the formula $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y$. That is, $(D_{\mathbf{u}}f)_{P_0} = \cos(x_0 + 3y_0)(1/\sqrt{5}) + 3\cos(x_0 + 3y_0)(2/\sqrt{5})$. Equivalently, $(D_{\mathbf{u}}f)_{P_0} = (7/\sqrt{5})\cos(x_0 + 3y_0)$. Then , $(D_{\mathbf{u}}f)_{P_0} = (7/\sqrt{5})\cos(13)$.

Directional derivatives and gradient vectors (Sect. 14.5)

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- **•** Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative of functions of three variables

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0, z_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is given by the limit

$$(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} \big[f(x_0 + u_x t, y_0 + u_y t, z_0 + u_z t) - f(x_0, y_0, z_0) \big].$$

Theorem If the function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ is differentiable at $P_0 = (x_0, y_0, z_0)$ and $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is a unit vector, then

$$\left(D_{\mathbf{u}}f\right)_{P_0} = f_x(x_0, y_0, z_0) \, u_x + f_y(x_0, y_0, z_0) \, u_y + f_z(x_0, y_0, z_0) \, u_z.$$

Directional derivative of functions of three variables

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$.

Solution: We first find a unit vector along \mathbf{v} ,

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{6}} \langle 2, 1, 1 \rangle.$$

Then, $(D_{\mathbf{u}}f)$ is given by $(D_{\mathbf{u}}f) = (2x)u_x + (4y)u_y + (6z)u_z$. We conclude, $(D_{\mathbf{u}}f)_{P_0} = (6)\frac{2}{\sqrt{6}} + (8)\frac{1}{\sqrt{6}} + (6)\frac{1}{\sqrt{6}}$, that is, $(D_{\mathbf{u}}f)_{P_0} = \frac{26}{\sqrt{6}}$.

 \triangleleft

The gradient vector and directional derivatives

Remark: The directional derivative of a function can be written in terms of a dot product.

(a) In the case of 2 variable functions: $D_{\mathbf{u}}f = f_{x}u_{x} + f_{y}u_{y}$

$$D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}$$
, with $\nabla f = \langle f_x, f_y \rangle$.

(b) In the case of 3 variable functions: $D_{\mathbf{u}}f = f_x u_x + f_y u_y + f_z u_z$,

 $D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}$, with $\nabla f = \langle f_x, f_y, f_z \rangle$.

The gradient vector and directional derivatives Definition The gradient vector of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f = \langle f_x, f_y \rangle$. The gradient vector of a differentiable function $f: D \subset \mathbb{R}^3 \to \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f = \langle f_x, f_y, f_z \rangle$. Notation: For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j}$. For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$. Theorem If $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with n = 2, 3, is a differentiable function and \mathbf{u} is a unit vector, then,

$$D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}.$$

The gradient vector and directional derivatives

Example

Find the gradient vector at any point in the domain of the function $f(x, y) = x^2 + y^2$.

Solution: The gradient is $\nabla f = \langle f_x, f_y \rangle$, that is, $\nabla f = \langle 2x, 2y \rangle$.

Properties of the the gradient vector

Remark: If θ is the angle between ∇f and **u**, then holds

 $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} \quad \Rightarrow \quad D_{\mathbf{u}}f = |\nabla f| \cos(\theta).$

The formula above implies:

- The function f increases the most rapidly when u is in the direction of ∇f, that is, θ = 0. The maximum increase rate of f is |∇f|.
- The function f decreases the most rapidly when u is in the direction of −∇f, that is, θ = π. The maximum decrease rate of f is −|∇f|.
- Since the function f does not change along level curve or surfaces, that is, D_uf = 0, then ∇f is perpendicular to the level curves or level surfaces.

Properties of the the gradient vector

Example

Find the direction of maximum increase of the function $f(x, y) = x^2/4 + y^2/9$ at an arbitrary point (x, y), and also at the points (1, 0) and (0, 1).

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle.$$

At the points (1,0) and (0,1) we obtain, respectively,

$$abla f = \left\langle rac{1}{2}, 0 \right\rangle. \qquad
abla f = \left\langle 0, rac{2}{9} \right
angle$$

 \triangleleft

Properties of the the gradient vector.

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: We first verify that P_0 belongs to the level curve f(x, y) = 1. This is the case, since

$$\frac{1}{4} + \frac{(9)(3)}{4} \frac{1}{9} = 1.$$

The equation of the line we look for is

$$\mathbf{r}(t) = \left\langle 1, -\frac{3\sqrt{3}}{2} \right\rangle + t \left\langle v_x, v_y \right\rangle,$$

where $\mathbf{v} = \langle v_x, v_y \rangle$ is tangent to the level curve f(x, y) = 1 at P_0 .

Properties of the the gradient vector

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$abla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{P_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

Therefore,

$$0 = \mathbf{v} \cdot \left(\nabla f\right)_{P_0} \quad \Rightarrow \quad \frac{1}{2} v_x = \frac{1}{\sqrt{3}} v_y \quad \Rightarrow \quad \mathbf{v} = \langle 2, \sqrt{3} \rangle.$$

 \triangleleft

The line is
$$\mathbf{r}(t) = \left\langle 1, -\frac{3\sqrt{3}}{2} \right\rangle + t \left\langle 2, \sqrt{3} \right\rangle.$$

Further properties of the the gradient vector

Theorem

If f, g are differentiable scalar valued vector functions, $g \neq 0$, and $k \in R$ any constant, then holds,

(a)
$$\nabla(kf) = k (\nabla f);$$

(b) $\nabla(f \pm g) = \nabla f \pm \nabla g;$
(c) $\nabla(fg) = (\nabla f)g + f (\nabla g);$
(d) $\nabla\left(\frac{f}{g}\right) = \frac{(\nabla f)g - f (\nabla g)}{g^2}$

