
Directional derivatives and gradient vectors (Sect. 14.5)

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial
derivatives to any direction.

Definition
The directional derivative of the function f : D ⊂ R2 → R at the
point P0 = (x0, y0) ∈ D in the direction of a unit vector
u = 〈ux , uy 〉 is given by the limit

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
.

Remarks: The line by r0 = 〈x0, y0〉 tangent to u is r(t) = r0 + tu.

(a) Equivalently,
(
Duf

)
P0

= lim
t→0

1

t

[
f (r(t))− f (r(0))

]
.

(b) If f̂ (t) = f (r(t)), then holds
(
Duf

)
P0

= f̂ ′(0).



Directional derivatives generalize partial derivatives

Example

The partial derivatives fx and fy are particular cases of directional
derivatives

(
Duf

)
P0

= limt→0
1
t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
:

I u = 〈1, 0〉 = i, then
(
Dif

)
P0

= fx(x0, y0).

I u = 〈0, 1〉 = j , then
(
Dj f

)
P0

= fy (x0, y0).
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Directional derivatives generalize partial derivatives

Example

Find the derivative of f (x , y) = x2 + y2 at P0 = (1, 0) in the
direction of θ = π/6 counterclockwise from the x-axis.

Solution: A unit vector in the direction of θ is u = 〈cos(θ), sin(θ)〉.
For θ = π/6 we get u = 〈1/2,

√
3/2〉.

The line containing the vector r0 = 〈1, 0〉 and tangent to u is

r(t) = 〈1, 0〉+
t

2
〈1,
√

3〉 ⇒ x(t) = 1 +
t

2
, y(t) =

√
3 t

2
.

Hence f̂ (t) = f (x(t), y(t)) is given by

f̂ (t) =
(
1 +

t

2

)2
+

3t2

4
⇒ f̂ (t) = 1 + t + t2.

Since (Duf )P0 = f̂ ′(0), and f̂ ′(t) = 1 + 2t, then (Duf )P0 = 1. C



Directional derivative of functions of two variables

Remark: The condition |u| = 1 in the line r(t) = 〈x0, y0〉+ u t
implies that the parameter t is the distance between the points
(x(t), y(t)) = (x0 + ux t, y0 + uy t) and (x0, y0).

In other words: The arc length function of the line is ` = t.

Proof:

d = |〈x − x0, y − y0〉| = |〈ux t, uy t〉| = |t| |u|, ⇒ d = |t|.

Equivalently,

r′(t) = u ⇒ ` =

∫ t

0
|r′(τ)| dτ =

∫ t

0
dτ ⇒ ` = t.

Remark: The directional derivative
(
Duf

)
P0

is the pointwise rate
of change of f with respect to the distance along the line parallel
to u passing through P0.

Directional derivatives and gradient vectors (Sect. 14.5)

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Directional derivative and partial derivatives

Remark: The directional
derivative

(
Duf

)
P0

is the
derivative of f along the
line r(t) = 〈x0, y0〉+ u t.
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Theorem
If the function f : D ⊂ R2 → R is differentiable at P0 = (x0, y0)
and u = 〈ux , uy 〉 is a unit vector, then(

Duf
)

P0
= fx(x0, y0) ux + fy (x0, y0) uy .

Directional derivative and partial derivatives

Proof:
The line r(t) = 〈x0, y0〉+ 〈ux , uy 〉 t has parametric equations:
x(t) = x0 + ux t and y(t) = y0 + uy t;

Denote f evaluated along the line as f̂ (t) = f (x(t), y(t)).

Now, on the one hand, f̂ ′(0) =
(
Duf

)
P0

, since

f̂ ′(0) = lim
t→0

1

t

[
f̂ (t)− f̂ (0)

]
f̂ ′(0) = lim

t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
= Duf (x0, y0).

On the other hand, the chain rule implies:

f̂ ′(0) = fx(x0, y0) x ′(0) + fy (x0, y0) y ′(0).

Therefore,
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .



Directional derivative and partial derivatives

Example

Compute the directional derivative of f (x , y) = sin(x + 3y) at the
point P0 = (4, 3) in the direction of vector v = 〈1, 2〉.

Solution: We need to find a unit vector in the direction of v.

Such vector is u =
v

|v|
⇒ u =

1√
5
〈1, 2〉.

We now use the formula
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .

That is,
(
Duf

)
P0

= cos(x0 + 3y0)(1/
√

5) + 3 cos(x0 + 3y0)(2/
√

5).

Equivalently,
(
Duf

)
P0

= (7/
√

5) cos(x0 + 3y0).

Then ,
(
Duf

)
P0

= (7/
√

5) cos(13). C

Directional derivatives and gradient vectors (Sect. 14.5)

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Directional derivative of functions of three variables

Definition
The directional derivative of the function f : D ⊂ R3 → R at the
point P0 = (x0, y0, z0) ∈ D in the direction of a unit vector
u = 〈ux , uy , uz〉 is given by the limit

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t, z0 + uz t)− f (x0, y0, z0)

]
.

Theorem
If the function f : D ⊂ R3 → R is differentiable at P0 = (x0, y0, z0)
and u = 〈ux , uy , uz〉 is a unit vector, then(

Duf
)

P0
= fx(x0, y0, z0) ux + fy (x0, y0, z0) uy + fz(x0, y0, z0) uz .

Directional derivative of functions of three variables

Example

Find
(
Duf

)
P0

for f (x , y , z) = x2 + 2y2 + 3z2 at the point

P0 = (3, 2, 1) along the direction given by v = 〈2, 1, 1〉.

Solution: We first find a unit vector along v,

u =
v

|v|
⇒ u =

1√
6
〈2, 1, 1〉.

Then,
(
Duf

)
is given by

(
Duf

)
= (2x)ux + (4y)uy + (6z)uz .

We conclude,
(
Duf

)
P0

= (6)
2√
6

+ (8)
1√
6

+ (6)
1√
6
,

that is,
(
Duf

)
P0

=
26√

6
. C



Directional derivatives and gradient vectors (Sect. 14.5)

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.

The gradient vector and directional derivatives

Remark: The directional derivative of a function can be written in
terms of a dot product.

(a) In the case of 2 variable functions: Duf = fxux + fyuy

Duf = (∇f ) · u, with ∇f = 〈fx , fy 〉.

(b) In the case of 3 variable functions: Duf = fxux + fyuy + fzuz ,

Duf = (∇f ) · u, with ∇f = 〈fx , fy , fz〉.



The gradient vector and directional derivatives

Definition
The gradient vector of a differentiable function f : D ⊂ R2 → R at
any point (x , y) ∈ D is the vector ∇f = 〈fx , fy 〉.

The gradient vector of a differentiable function f : D ⊂ R3 → R at
any point (x , y , z) ∈ D is the vector ∇f = 〈fx , fy , fz〉.

Notation:

I For two variable functions: ∇f = fx i + fy j .

I For two variable functions: ∇f = fx i + fy j + fz k.

Theorem
If f : D ⊂ Rn → R, with n = 2, 3, is a differentiable function and u
is a unit vector, then,

Duf = (∇f ) · u.

The gradient vector and directional derivatives

Example

Find the gradient vector at any point in the domain of the function
f (x , y) = x2 + y2.

Solution: The gradient is ∇f = 〈fx , fy 〉, that is, ∇f = 〈2x , 2y〉. C

Remark:
∇f = 2r,
with
r = 〈x , y〉.

u

2f(x,y) = x  + y 2z
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Directional derivatives and gradient vectors (Sect. 14.5)

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.

Properties of the the gradient vector

Remark: If θ is the angle between ∇f and u, then holds

Duf = ∇f · u ⇒ Duf = |∇f | cos(θ).

The formula above implies:

I The function f increases the most rapidly when u is in the
direction of ∇f , that is, θ = 0. The maximum increase rate of
f is |∇f |.

I The function f decreases the most rapidly when u is in the
direction of −∇f , that is, θ = π. The maximum decrease rate
of f is −|∇f |.

I Since the function f does not change along level curve or
surfaces, that is, Duf = 0, then ∇f is perpendicular to the
level curves or level surfaces.



Properties of the the gradient vector

Example

Find the direction of maximum increase of the function
f (x , y) = x2/4 + y2/9 at an arbitrary point (x , y), and also at the
points (1, 0) and (0, 1).

Solution: The direction of maximum increase of f is the direction
of its gradient vector:

∇f =
〈x

2
,
2y

9

〉
.

At the points (1, 0) and (0, 1) we obtain, respectively,

∇f =
〈1

2
, 0

〉
. ∇f =

〈
0,

2

9

〉
.

C

Properties of the the gradient vector.

Example

Given the function f (x , y) = x2/4 + y2/9, find the equation of a
line tangent to a level curve f (x , y) = 1 at the point
P0 = (1,−3

√
3/2).

Solution: We first verify that P0 belongs to the level curve
f (x , y) = 1. This is the case, since

1

4
+

(9)(3)

4

1

9
= 1.

The equation of the line we look for is

r(t) =
〈
1,−3

√
3

2

〉
+ t 〈vx , vy 〉,

where v = 〈vx , vy 〉 is tangent to the level curve f (x , y) = 1 at P0.



Properties of the the gradient vector

Example

Given the function f (x , y) = x2/4 + y2/9, find the equation of a
line tangent to a level curve f (x , y) = 1 at the point
P0 = (1,−3

√
3/2).

Solution: Therefore, v ⊥ ∇f at P0. Since,

∇f =
〈x

2
,
2y

9

〉
⇒

(
∇f

)
P0

=
〈1

2
,−2

9

3
√

3

2

〉
=

〈1

2
,− 1√

3

〉
.

Therefore,

0 = v ·
(
∇f

)
P0

⇒ 1

2
vx =

1√
3

vy ⇒ v = 〈2,
√

3〉.

The line is r(t) =
〈
1,−3

√
3

2

〉
+ t 〈2,

√
3〉. C

Properties of the the gradient vector
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Further properties of the the gradient vector

Theorem
If f , g are differentiable scalar valued vector functions, g 6= 0, and
k ∈ R any constant, then holds,

(a) ∇(kf ) = k (∇f );

(b) ∇(f ± g) = ∇f ±∇g;

(c) ∇(fg) = (∇f ) g + f (∇g);

(d) ∇
( f

g

)
=

(∇f ) g − f (∇g)

g2
.


