Chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: Chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- Chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in a plane.
- Chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in space.
- Chain rule for functions defined on surfaces in space.
- Chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$

Chain rule for change of coordinates in a line.

Theorem

If the functions $f:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ and $x:\left[t_{0}, t_{1}\right] \rightarrow\left[x_{0}, x_{1}\right]$ are differentiable, then the function $\hat{f}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(x(t))$ is differentiable and

$$
\frac{d \hat{f}}{d t}(t)=\frac{d f}{d x}(x(t)) \frac{d x}{d t}(t)
$$

Notation:

The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{d f}{d x} \frac{d x}{d t}$.
Alternative notations are $\hat{f}^{\prime}(t)=f^{\prime}(x(t)) x^{\prime}(t)$ and $\hat{f}^{\prime}=f^{\prime} x^{\prime}$.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$

Chain rule for change of coordinates in a line.

Example

The volume V of a gas balloon depends on the temperature F in Fahrenheit as $V(F)=k F^{2}+V_{0}$. Let $F(C)=(9 / 5) C+32$ be the temperature in Fahrenheit corresponding to C in Celsius. Find the rate of change $\hat{V}^{\prime}(C)$.

Solution: Use the chain rule to derivate $\hat{V}(C)=V(F(C))$,

$$
\hat{V}^{\prime}(C)=V^{\prime}(F) F^{\prime}=2 k F F^{\prime}=2 k\left(\frac{9}{5} C+32\right) \frac{9}{5} .
$$

We conclude that $V^{\prime}(C)=\frac{18 k}{5}\left(\frac{9}{5} C+32\right)$.
Remark: One could first compute $\hat{V}(C)=k\left(\frac{9}{5} C+32\right)^{2}+V_{0}$
and then find the derivative $\hat{V}^{\prime}(C)=2 k\left(\frac{9}{5} C+32\right) \frac{9}{5}$.

Chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: Chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- Chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in a plane.
- Chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in space.
- Chain rule for functions defined on surfaces in space.
- Chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$
The chain rule for functions defined on a curve in a plane.
Theorem
If the functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{2}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}(t)=\frac{\partial f}{\partial x}(\mathbf{r}(t)) \frac{d x}{d t}(t)+\frac{\partial f}{\partial y}(\mathbf{r}(t)) \frac{d y}{d t}(t)
$$

Notation:
The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$. An alternative notation is $\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
The chain rule for functions defined on a curve in a plane.

Example

Find the rate of change of the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$.

Solution: The rate of change of f along the curve $\mathbf{r}(t)$ is the derivative of $\hat{f}(t)=f(\mathbf{r}(t))=f(x(t), y(t))$. We do not need to compute $\hat{f}(t)=f(\mathbf{r}(t))$. Instead, the chain rule implies

$$
\hat{f}^{\prime}(t)=f_{x}(\mathbf{r}) x^{\prime}+f_{y}(\mathbf{r}) y^{\prime}=2 x x^{\prime}+6 y^{2} y^{\prime}
$$

Since $x(t)=\sin (t)$ and $y(t)=\cos (2 t)$,

$$
\hat{f}^{\prime}(t)=2 \sin (t) \cos (t)+6 \cos ^{2}(2 t)[-2 \sin (2 t)]
$$

The result is $\hat{f}^{\prime}(t)=2 \sin (t) \cos (t)-12 \cos ^{2}(2 t) \sin (2 t)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

The chain rule for change of coordinates in a plane.

Theorem

If the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition
$\hat{f}(t, s)=f(x(t, s), y(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s} .
\end{aligned}
$$

Remark: We denote by $f(x, y)$ the function values in the coordinates (x, y), while we denote by $\hat{f}(t, s)$ are the function values in the coordinates (t, s).

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$
The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find the derivatives of f in polar coordinates (r, θ).
Solution: The relation between Cartesian and polar coordinates is

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta) .
$$

The function f in polar coordinates is $\hat{f}(r, \theta)=f(x(r, \theta), y(r, \theta))$.
The chain rule says $\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}$ and $\hat{f}_{\theta}=f_{x} x_{\theta}+f_{y} y_{\theta}$, hence

$$
\begin{gather*}
\hat{f}_{r}=2 x \cos (\theta)+6 y \sin (\theta) \Rightarrow \hat{f}_{r}=2 r \cos ^{2}(\theta)+6 r \sin ^{2}(\theta) . \\
\hat{f}_{\theta}=-2 x r \sin (\theta)+6 y r \cos (\theta), \\
\hat{f}_{\theta}=-2 r^{2} \cos (\theta) \sin (\theta)+6 r^{2} \cos (\theta) \sin (\theta) .
\end{gather*}
$$

Chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: Chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- Chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in a plane.
- Chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in space.
- Chain rule for functions defined on surfaces in space.
- Chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
Chain rule for functions defined on a curve in space.
Theorem
If the functions $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, then the function
$\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Notation:
The equation above is usually written as

$$
\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$
Chain rule for functions defined on a curve in space.

Example

Find the derivative of $f=x^{2}+y^{3}+z^{4}$ along the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle$.

Solution: Recall: We do not need to compute

$$
\hat{f}(t)=f(\mathbf{r}(t))=f(x(t), y(t), z(t))
$$

to find \hat{f}^{\prime}. We only need to use the chain rule formula,

$$
\begin{gather*}
\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime} \\
\hat{f}^{\prime}=-2 x \sin (t)+3 y^{2} \cos (t)+4 z^{3}(3) \\
\hat{f}^{\prime}=-2 \cos (t) \sin (t)+3 \sin ^{2}(t) \cos (t)+4(3)\left(3^{3}\right) t^{3}
\end{gather*}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$
Chain rule for functions defined on surfaces in space.
Theorem
If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the surface given by functions $x, y, z: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, and $z(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} .
\end{aligned}
$$

Remark:

We denote by $f(x, y, z)$ the function values in the coordinates (x, y, z), while we denote by $\hat{f}(t, s)$ the function values at the surface point with coordinates (t, s).

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$
Chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find its derivatives on the surface given by $x(t, s)=t+s, \quad y(t, s)=t^{2}+s^{2}, \quad z(t, s)=t-s$.

Solution: Recall: We do not need to compute the function

$$
\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))
$$

to obtain the derivatives of f along the surface $x(t, s), y(t, s)$ and $z(t, s)$, which are given by \hat{f}_{t} and \hat{f}_{s}. We just use the chain rule,

$$
\begin{gathered}
\hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \quad \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} \\
\hat{f}_{t}=2(t+s)+6\left(t^{2}+s^{2}\right)(2 t)+4(t-s) \\
\hat{f}_{s}=2(t+s)+6\left(t^{2}+s^{2}\right)(2 s)-4(t-s)
\end{gathered}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$
Remark: We describe the surface in the previous example.

Example

Given the surface in parametric form by the equations

$$
x(t, s)=t+s, \quad y(t, s)=t^{2}+s^{2}, \quad z(t, s)=t-s,
$$

express that surface as an equation for x, y and z.
Solution: Invert the equations for x and z and obtain t and s,

$$
\frac{x+z}{2}=t, \quad \frac{x-z}{2}=s
$$

We introduce these t and s into the equation for y,

$$
y=\left(\frac{x+z}{2}\right)^{2}+\left(\frac{x-z}{2}\right)^{2}=\frac{\left(x^{2}+z^{2}+2 x z\right)+\left(x^{2}+z^{2}-2 x z\right)}{4}
$$

hence, $y=\frac{x^{2}}{2}+\frac{z^{2}}{2}$, a circular paraboloid along the y axis.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$
Chain rule for change of coordinates in space.

Theorem

If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y, z: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s, r), y(t, s, r)$, and $z(t, s, r)$, then the function $\hat{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s, r)=f(x(t, s, r), y(t, s, r), z(t, s, r))$ is differentiable and

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} \\
& \hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}+f_{z} z_{r} .
\end{aligned}
$$

Remark:

We denote by $f(x, y, z)$ the function values in the coordinates (x, y, z), while we denote by $\hat{f}(t, s, r)$ the function values in the coordinates (t, s, r).

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$

Chain rule for change of coordinates in space.

Example

Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates, find its r-derivative in spherical coordinates (r, θ, ϕ),

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Solution: Recall: We do not need to compute the function

$$
\hat{f}(r, \theta, \phi)=f(x(r, \theta, \phi), y(r, \theta, \phi), z(r, \theta, \phi)) .
$$

to obtain the r-derivative of f. We just use the chain rule,

$$
\begin{gathered}
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}+f_{z} z_{r}=2 x x_{r}+6 y y_{r}+2 z z_{r} \\
\hat{f}_{r}=2 r \cos ^{2}(\phi) \sin ^{2}(\theta)+6 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta) \\
\hat{f}_{r}=2 r \sin ^{2}(\theta)+4 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta)
\end{gathered}
$$

We conclude that $\hat{f}_{r}=2 r+4 r \sin ^{2}(\phi) \sin ^{2}(\theta)$.

Chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: Chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- Chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in a plane.
- Chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- Chain rule for functions defined on a curve in space.
- Chain rule for functions defined on surfaces in space.
- Chain rule for change of coordinates in space.
- A formula for implicit differentiation.

A formula for implicit differentiation

Theorem

If the differentiable function with values $F(x, y)$ defines implicitly the function values $y(x)$ by the equation $F(x, y)=0$, and if the function $F_{y} \neq 0$, then y is differentiable and

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

Proof: Since $y(x)$ are defined implicitly by the equation

$$
F(x, y(x))=0
$$

then the function $\hat{F}(x)=F(x, y(x))$ vanishes. Therefore, its derivative vanishes too,

$$
0=\frac{d \hat{F}}{d x}=F_{x}+F_{y} y^{\prime} \quad \Rightarrow \quad y^{\prime}=-\frac{F_{x}}{F_{y}} .
$$

A formula for implicit differentiation

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution:

The partial derivatives of function F are

$$
F_{x}=e^{y}-\sin (x-y), \quad F_{y}=x e^{y}+\sin (x-y)
$$

Therefore, the Theorem above implies

$$
y^{\prime}(x)=\frac{\left[\sin (x-y)-e^{y}\right]}{\left[x e^{y}+\sin (x-y)\right]}
$$

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution: We now use the old method.
Since $F(x, y(x))=x e^{y}+\cos (x-y)=0$, then differentiating on both sides we get

$$
e^{y}+x y^{\prime} e^{y}-\sin (x-y)-\sin (x-y)\left(-y^{\prime}\right)=0
$$

Reordering terms,

$$
y^{\prime}\left[x e^{y}+\sin (x-y)\right]=\sin (x-y)-e^{y}
$$

We conclude that: $\quad y^{\prime}(x)=\frac{\left[\sin (x-y)-e^{y}\right]}{\left[x e^{y}+\sin (x-y)\right]}$.

