- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Partial derivatives and continuity

Recall: The following result holds for single variable functions.
Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Proof:

$$
\begin{gathered}
\lim _{h \rightarrow 0}[f(x+h)-f(x)]=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] h \\
\lim _{h \rightarrow 0}[f(x+h)-f(x)]=f^{\prime}(x) \lim _{h \rightarrow 0} h=0
\end{gathered}
$$

That is, $\lim _{h \rightarrow 0} f(x+h)=f(x)$, so f is continuous.
Remark: However, the claim "If $f_{x}(x, y)$ and $f_{y}(x, y)$ exist, then $f(x, y)$ is continuous" is false.

Partial derivatives and continuity

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.

Remark:

- This Theorem is not true for the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- There exist functions
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist
 but f is not continuous at $\left(x_{0}, y_{0}\right)$.

Remark: This is a bad property for a differentiable function.

Partial derivatives and continuity

Remark: Here is another discontinuous function at $(0,0)$ having partial derivatives at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$;
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Solution: (a) Along $x=0, f(0, y)=0$, so $\lim _{y \rightarrow 0} f(0, y)=0$.
Along the path $x=y, f(x, x)=\frac{2 x^{2}}{2 x^{2}}=1$, so $\lim _{x \rightarrow 0} f(x, x)=1$.
The Two-Path Theorem implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ DNE.

Partial derivatives and continuity

Example

(a) Show that f is not continuous at $(0,0)$;
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Solution: Recall: $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ DNE.
(b) The partial derivatives are defined at $(0,0)$.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0+h, 0)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 . \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0,0+h)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 .
\end{aligned}
$$

Therefore, $f_{x}(0,0)=f_{y}(0,0)=0$.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ by $\left(x_{0}, f\left(x_{0}\right)\right)$ with slope $f^{\prime}\left(x_{0}\right)$.

The equation of the tangent line is

$$
L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

The function f is approximated by the line L near x_{0} means

$$
f(x)=L(x)+\epsilon_{1}\left(x-x_{0}\right) \quad \text { with } \epsilon_{1}(x) \rightarrow 0 \text { as } x \rightarrow x_{0} .
$$

Remark: The graph of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is approximated by a line at every point in D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Remark: The idea to define differentiable functions:
The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

We will show next week that the equation of the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an interior point $\left(x_{0}, y_{0}\right)$ in D, let L be the linear function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

The function f is called differentiable at $\left(x_{0}, y_{0}\right)$ iff the function f is approximated by the linear function L near $\left(x_{0}, y_{0}\right)$, that is,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

where the functions ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.
The function f is differentiable iff f is differentiable at every interior point of D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Remark: Recalling the linear function L given above,

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

an equivalent expression for f being differentiable,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

is the following: Denote $z=f(x, y)$ and $z_{0}=f\left(x_{0}, y_{0}\right)$, and introduce the increments

$$
\Delta z=\left(z-z_{0}\right), \quad \Delta y=\left(y-y_{0}\right), \quad \Delta x=\left(x-x_{0}\right)
$$

then, the equation above is

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

(Equation used in the textbook to define a differentiable function.)

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Differentiability and continuity

Remark: We will show in
Sect. 14.6 that the graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Theorem

If a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Remark: A simple sufficient condition on a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ guarantees that f is differentiable.

Theorem

If the partial derivatives f_{x} and f_{y} of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

A primer on differential equations

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

Solution: Multiply by $e^{-k x}$ the equation above $f^{\prime}(x)-k f(x)=0$.
The result is $f^{\prime}(x) e^{-k x}-f(x) k e^{-k x}=0$.
The left-hand side is a total derivative, $\left[f(x) e^{-k x}\right]^{\prime}=0$.
The solution of the equation above is $f(x) e^{-k x}=c$, with $c \in \mathbb{R}$.
Therefore, $f(x)=c e^{k x}$.

A primer on differential equations

Remark: Often in physical applications appear three differential equations for functions $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4$.

- The Laplace equation: (Gravitation, electrostatics.)

$$
f_{x x}+f_{y y}+f_{z z}=0
$$

- The Heat equation: (Heat propagation, diffusion.)

$$
f_{t}=k\left(f_{x x}+f_{y y}+f_{z z}\right)
$$

- The Wave equation: (Light, sound, gravitation.)

$$
f_{t t}=v\left(f_{x x}+f_{y y}+f_{z z}\right)
$$

A primer on differential equations

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

Solution: We first compute T_{t},

$$
T_{t}=-4 e^{-t} \sin (2 x)
$$

Now compute $T_{x x}$,

$$
T_{x}=2 e^{-t} \cos (2 x) \quad \Rightarrow \quad T_{x x}=-4 e^{-t} \sin (2 x)
$$

We conclude that $T_{t}=T_{x x}$.

A primer on differential equations

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $f_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $f_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
f_{x x}+f_{y y}+f_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}}=0 .
$$

We conclude that $f_{x x}+f_{y y}+f_{z z}=0$.

A primer on differential equations

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2} \Rightarrow f_{t t}=6 v^{2}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-3(v t-x)^{2} \Rightarrow f_{x x}=6(v t-x) .
$$

Since $v^{2} f_{x x}=6 v^{2}(v t-x)$, then $f_{t t}=v^{2} f_{x x}$.

A primer on differential equations

Example

Given any $v \in \mathbb{R}$ and any twice continuously differentiable function $u: \mathbb{R} \rightarrow \mathbb{R}$, verify that $f(t, x)=u(v t-x)$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x) \Rightarrow f_{t t}=v^{2} u^{\prime \prime}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-u^{\prime}(v t-x)^{2} \Rightarrow f_{x x}=u^{\prime \prime}(v t-x)
$$

Since $v^{2} f_{x x}=v^{2} u^{\prime \prime}(v t-x)$, then $f_{t t}=v^{2} f_{x x}$.

