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The limit of functions of several variables.

Definition
The limit of the function f : D ⊂ Rn → R, with n ∈ N, at the
point P̂ ∈ Rn is the number L ∈ R, denoted as lim

P→P̂
f (P) = L,

iff for every ε > 0 there exists δ > 0 such that

0 < |P − P̂| < δ ⇒ |f (P)− L| < ε.

Remarks:

(a) In Cartesian coordinates P = (x1, · · · , xn), P̂ = (x̂1, · · · , x̂n).
Then, |P − P̂| is the distance between points in Rn,

|P − P̂| = |
−→
PP̂| =

√
(x1 − x̂1)2 + · · ·+ (xn − x̂n)2.

(b) |f (P)− L| is the absolute value of real numbers.



The limit of functions f : R2 → R.

Idea of the limit definition: Consider f : R2 → R. Then,

lim
(x ,y)→(x0,y0)

f (x , y) = L

means that the closer (x , y) is to (x0, y0) then the closer the value
of f (x , y) is to L.
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Computing a limit by the definition

Example

Use the definition of limit to compute lim
(x ,y)→(0,0)

2yx2

x2 + y2
.

Solution: The function f (x , y) =
2yx2

x2 + y2
is not defined at (0, 0).

First: Guess what the limit L is.

Along the line x = 0 the function is f (0, y) =
0

y2
= 0.

Therefore, if L exists, it must be L = 0. Given ε, find δ.

Fix any number ε > 0. Given that ε, find a number δ > 0 such that

0 <
√

(x − 0)2 + (y − 0)2 < δ ⇒
∣∣∣ 2yx2

x2 + y2
− 0

∣∣∣ < ε.

Computing a limit by the definition

Example

Use the definition of limit to compute lim
(x ,y)→(0,0)

2yx2

x2 + y2
.

Solution: Given any ε > 0, find a number δ > 0 such that√
x2 + y2 < δ ⇒

∣∣∣ 2yx2

x2 + y2

∣∣∣ < ε.

Recall: x2 6 x2 + y2, that is,
x2

x2 + y2
6 1. Then

∣∣∣ 2yx2

x2 + y2

∣∣∣ = (2|y |) x2

x2 + y2
6 2|y | = 2

√
y2 6 2

√
x2 + y2.

Choose δ = ε/2. If
√

x2 + y2 < δ, then
∣∣∣ 2yx2

x2 + y2

∣∣∣ < 2δ = ε.

We conclude that L = 0. C
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Properties of limits of functions

Theorem
If f , g : D ⊂ Rn → R, with n ∈ N, satisfying the conditions
lim

P→P̂
f (P) = L and lim

P→P̂
g(P) = M, then holds

(a) lim
P→P̂

f (P)± g(P) = L±M;

(b) If k ∈ R, then lim
P→P̂

kf (P) = kL;

(c) lim
P→P̂

f (P) g(P) = LM;

(d) If M 6= 0, then lim
P→P̂

[ f (P)

g(P)

]
=

L

M
.

(e) If k ∈ Z and s ∈ N, then lim
P→P̂

[
f (P)

]r/s
= Lr/s .

Remark: The Theorem above implies: If f = R/S is the quotient
of two polynomials with S(P̂) 6= 0, then lim

P→P̂
f (P) = f (P̂).
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Limits of R/S at P̂ where S(P̂) 6= 0 are simple to find

Example

Compute lim
(x ,y)→(2,1)

x2 + 2y − x√
x − y

.

Solution: The function above is a rational function in x and y and
its denominator is defined and does not vanish at (2, 1). Therefore

lim
(x ,y)→(2,1)

x2 + 2y − x√
x − y

=
22 + 2(1)− 2√

2− 1
,

that is,

lim
(x ,y)→(2,1)

x2 + 2y − x√
x − y

= 4.

C
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Continuous functions f : Rn → R

Definition
A function f : D ⊂ Rn → R, with n ∈ N, is called continuous at
P̂ ∈ D iff holds lim

P→P̂
f (P) = f (P̂).

Remarks:
I The definition above says three things:

(a) f (P̂) is defined;
(b) lim

P→P̂
f (P) = L exists;

(c) f (P̂) = L.

I A function f : D ⊂ Rn → R is continuous iff f is continuous
at every point in D.

I Continuous functions have graphs without holes or jumps.



Continuous functions f : R2 → R

Example

I Polynomial functions are continuous in Rn.

For example, P2(x , y) = a0 + b1x + b2y + c1x
2 + c2xy + c3y

2.

I Rational functions f = R/S are continuous on their domain.

For example, f (x , y) =
x2 + 3y − x2y2 + y4

x2 − y2
, with x 6= ±y .

I Composition of continuous functions are continuous.

For example, f (x , y) = ecos(x2+y2).

Continuous functions f : R2 → R

Example

Compute lim
(x ,y)→(

√
π,0)

ecos(x2+y2).

Solution:
The function f (x , y) = ecos(x2+y2) is continuous for all (x , y) ∈ R2.
Therefore,

lim
(x ,y)→(

√
π,0)

ecos(x2+y2) = ecos(π+0) = e−1,

that is,

lim
(x ,y)→(

√
π,0)

ecos(x2+y2) =
1

e
.

C
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Two-path test for the non-existence of limits

Theorem
If a function f : D ⊂ Rn → R, with n ∈ N, has two different limits
along two different paths as P approaches P̂, then lim

P→P̂
f (P) does

not exist.

Remark: Consider the case f : D ⊂ R2 → R.

If

(a) f (x , y) → L1 along a path C1 as (x , y) → (x0, y0),

(b) f (x , y) → L2 along a path C2 as (x , y) → (x0, y0),

(c) L1 6= L2,

then lim
(x ,y)→(x0,y0)

f (x , y) does not exist.

Remark: When side limits do not agree, the limit does not exist.



Two-path test for the non-existence of limits

Remark: When side limits
do not agree, the limit
does not exist.
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Two-path test for the non-existence of limits

Example

Compute lim
(x ,y)→(0,0)

3x2

x2 + 2y2
.

Solution: f (x , y) =
3x2

(x2 + 2y2)
is not continuous at (0, 0).

We try to show that the limit above does not exist.

If path C1 is the x-axis, (y = 0), then,

f (x , 0) =
3x2

x2
= 3, ⇒ lim

(x ,0)→(0,0)
f (x , 0) = 3.

If path C2 is the y -axis, (x = 0), then,

f (0, y) = 0, ⇒ lim
(0,y)→(0,0)

f (0, y) = 0.

Therefore, lim
(x ,y)→(0,0)

3x2

x2 + 2y2
does not exist. C



Two-path test for the non-existence of limits

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, Cm given by y = mx , with m a constant.
That is,

f (x ,mx) =
3x2

x2 + 2m2x2
=

3

1 + 2m2
.

The limits along these paths are:

lim
(x ,mx)→(0,0)

f (x ,mx) =
3

1 + 2m2

which are different for each value of m.

This agrees with our conclusion: lim
(x ,y)→(0,0)

3x2

x2 + 2y2
DNE.

Limits and continuity for f : Rn → R (Sect. 14.2)

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



The sandwich test for the existence of limits

Theorem
If functions f , g , h : D ⊂ Rn → R, with n ∈ N, satisfy:

(a) g(P) 6 f (P) 6 h(P) for all P near P̂ ∈ D;

(b) lim
P→P̂

g(P) = L = lim
P→P̂

h(P);

then lim
P→P̂

f (P) = L.

f

h

g

P = 0

L
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The sandwich test for the existence of limits

Example

Compute lim
(x ,y)→(0,0)

x2y

x2 + y2
.

Solution: f (x , y) =
x2y

x2 + y2
is not continuous at (0, 0).

The Two-Path Theorem does not prove non-existence of the limit.

Because: Consider paths Cm given by y = mx , with m ∈ R. Then

f (x ,mx) =
x2mx

x2 + m2x2
=

mx

1 + m2
,

which implies lim
(x ,mx)→(0,0)

f (x ,mx) = 0, ∀m ∈ R.

We cannot conclude that the limit does not exist.
We cannot conclude that the limit exists.



The sandwich test for the existence of limits

Example

Compute lim
(x ,y)→(0,0)

x2y

x2 + y2
.

Solution: Recall:
x2

x2 + y2
6 1, for all (x , y) 6= (0, 0).

So,
∣∣∣ x2y

x2 + y2

∣∣∣ = |y |
( x2

x2 + y2

)
6 |y |, for all (x , y) 6= (0, 0). So,

∣∣∣ x2y

x2 + y2

∣∣∣ 6 |y | ⇔ −|y | 6 x2y

x2 + y2
6 |y |.

Since lim
y→0

±|y | = 0, the Sandwich Theorem with functions

g = −|y |, h = |y |, implies

lim
(x ,y)→(0,0)

x2y

x2 + y2
= 0. C


