Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

The limit of functions of several variables.

Definition

The limit of the function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, at the point $\hat{P} \in \mathbb{R}^{n}$ is the number $L \in \mathbb{R}$, denoted as $\lim _{P \rightarrow \hat{P}} f(P)=L$, iff for every $\epsilon>0$ there exists $\delta>0$ such that

$$
0<|P-\hat{P}|<\delta \quad \Rightarrow \quad|f(P)-L|<\epsilon
$$

Remarks:
(a) In Cartesian coordinates $P=\left(x_{1}, \cdots, x_{n}\right), \hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$. Then, $|P-\hat{P}|$ is the distance between points in \mathbb{R}^{n},

$$
|P-\hat{P}|=|\overrightarrow{P \hat{P}}|=\sqrt{\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}}
$$

(b) $|f(P)-L|$ is the absolute value of real numbers.

The limit of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Idea of the limit definition: Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then,

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

means that the closer (x, y) is to $\left(x_{0}, y_{0}\right)$ then the closer the value of $f(x, y)$ is to L.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Computing a limit by the definition

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.
Solution: The function $f(x, y)=\frac{2 y x^{2}}{x^{2}+y^{2}}$ is not defined at $(0,0)$.
First: Guess what the limit L is.
Along the line $x=0$ the function is $f(0, y)=\frac{0}{y^{2}}=0$.
Therefore, if L exists, it must be $L=0$. Given ϵ, find δ.
Fix any number $\epsilon>0$. Given that ϵ, find a number $\delta>0$ such that

$$
0<\sqrt{(x-0)^{2}+(y-0)^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}-0\right|<\epsilon
$$

Computing a limit by the definition

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.
Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \quad \Rightarrow \quad\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$. Then

$$
\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|=(2|y|) \frac{x^{2}}{x^{2}+y^{2}} \leqslant 2|y|=2 \sqrt{y^{2}} \leqslant 2 \sqrt{x^{2}+y^{2}} .
$$

Choose $\delta=\epsilon / 2$. If $\sqrt{x^{2}+y^{2}}<\delta$, then $\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<2 \delta=\epsilon$.
We conclude that $L=0$.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Properties of limits of functions

Theorem
If $f, g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, satisfying the conditions $\lim _{P \rightarrow \hat{P}} f(P)=L$ and $\lim _{P \rightarrow \hat{P}} g(P)=M$, then holds
(a) $\lim _{P \rightarrow \hat{P}} f(P) \pm g(P)=L \pm M$;
(b) If $k \in \mathbb{R}$, then $\lim _{P \rightarrow \hat{P}} k f(P)=k L$;
(c) $\lim _{P \rightarrow \hat{P}} f(P) g(P)=L M$;
(d) If $M \neq 0$, then $\lim _{P \rightarrow \hat{P}}\left[\frac{f(P)}{g(P)}\right]=\frac{L}{M}$.
(e) If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim _{P \rightarrow \hat{P}}[f(P)]^{r / s}=L^{r / s}$.

Remark: The Theorem above implies: If $f=R / S$ is the quotient of two polynomials with $S(\hat{P}) \neq 0$, then $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Limits of R / S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find

Example
Compute $\lim _{(x, y) \rightarrow(2,1)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}$.

Solution: The function above is a rational function in x and y and its denominator is defined and does not vanish at $(2,1)$. Therefore

$$
\lim _{(x, y) \rightarrow(2,1)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}=\frac{2^{2}+2(1)-2}{\sqrt{2-1}}
$$

that is,

$$
\lim _{(x, y) \rightarrow(2,1)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}=4 .
$$

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Definition

A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, is called continuous at $\hat{P} \in D$ iff holds $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Remarks:

- The definition above says three things:
(a) $f(\hat{P})$ is defined;
(b) $\lim _{P \rightarrow \hat{P}} f(P)=L$ exists;
(c) $f(\hat{P})=L$.
- A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous iff f is continuous at every point in D.
- Continuous functions have graphs without holes or jumps.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Example

- Polynomial functions are continuous in \mathbb{R}^{n}.

For example, $P_{2}(x, y)=a_{0}+b_{1} x+b_{2} y+c_{1} x^{2}+c_{2} x y+c_{3} y^{2}$.

- Rational functions $f=R / S$ are continuous on their domain.

For example, $f(x, y)=\frac{x^{2}+3 y-x^{2} y^{2}+y^{4}}{x^{2}-y^{2}}$, with $x \neq \pm y$.

- Composition of continuous functions are continuous.

For example, $f(x, y)=e^{\cos \left(x^{2}+y^{2}\right)}$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Example

Compute $\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} e^{\cos \left(x^{2}+y^{2}\right)}$.
Solution:
The function $f(x, y)=e^{\cos \left(x^{2}+y^{2}\right)}$ is continuous for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} e^{\cos \left(x^{2}+y^{2}\right)}=e^{\cos (\pi+0)}=e^{-1}
$$

that is,

$$
\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} e^{\cos \left(x^{2}+y^{2}\right)}=\frac{1}{e} .
$$

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Two-path test for the non-existence of limits

Theorem
If a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along two different paths as P approaches \hat{P}, then $\lim _{P \rightarrow \hat{P}} f(P)$ does not exist.

Remark: Consider the case $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
If
(a) $f(x, y) \rightarrow L_{1}$ along a path C_{1} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
(b) $f(x, y) \rightarrow L_{2}$ along a path C_{2} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
(c) $L_{1} \neq L_{2}$,
then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.
Remark: When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits

Remark: When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits

Example

Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\frac{3 x^{2}}{\left(x^{2}+2 y^{2}\right)}$ is not continuous at $(0,0)$.
We try to show that the limit above does not exist.
If path C_{1} is the x-axis, $(y=0)$, then,

$$
f(x, 0)=\frac{3 x^{2}}{x^{2}}=3, \quad \Rightarrow \quad \lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=3
$$

If path C_{2} is the y-axis, $(x=0)$, then,

$$
f(0, y)=0, \quad \Rightarrow \quad \lim _{(0, y) \rightarrow(0,0)} f(0, y)=0
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$ does not exist.

Two-path test for the non-existence of limits

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_{m} given by $y=m x$, with m a constant.
That is,

$$
f(x, m x)=\frac{3 x^{2}}{x^{2}+2 m^{2} x^{2}}=\frac{3}{1+2 m^{2}} .
$$

The limits along these paths are:

$$
\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=\frac{3}{1+2 m^{2}}
$$

which are different for each value of m.
This agrees with our conclusion: $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$ DNE.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

The sandwich test for the existence of limits
Theorem
If functions $f, g, h: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, satisfy:
(a) $g(P) \leqslant f(P) \leqslant h(P)$ for all P near $\hat{P} \in D$;
(b) $\lim _{P \rightarrow \hat{P}} g(P)=L=\lim _{P \rightarrow \hat{P}} h(P)$;
then $\lim _{P \rightarrow \hat{P}} f(P)=L$.

The sandwich test for the existence of limits
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit.
Because: Consider paths C_{m} given by $y=m x$, with $m \in \mathbb{R}$. Then

$$
f(x, m x)=\frac{x^{2} m x}{x^{2}+m^{2} x^{2}}=\frac{m x}{1+m^{2}}
$$

which implies $\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=0, \quad \forall m \in \mathbb{R}$.
We cannot conclude that the limit does not exist.
We cannot conclude that the limit exists.

The sandwich test for the existence of limits

Example

Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: Recall: $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$, for all $(x, y) \neq(0,0)$.
So, $\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|=|y|\left(\frac{x^{2}}{x^{2}+y^{2}}\right) \leqslant|y|$, for all $(x, y) \neq(0,0)$. So,

$$
\left|\frac{x^{2} y}{x^{2}+y^{2}}\right| \leqslant|y| \quad \Leftrightarrow \quad-|y| \leqslant \frac{x^{2} y}{x^{2}+y^{2}} \leqslant|y| .
$$

Since $\lim _{y \rightarrow 0} \pm|y|=0$, the Sandwich Theorem with functions $g=-|y|, h=|y|$, implies

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0
$$

