

The limit of functions of several variables.

Definition

The *limit* of the function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, at the point $\hat{P} \in \mathbb{R}^n$ is the number $L \in \mathbb{R}$, denoted as $\lim_{P \to \hat{P}} f(P) = L$, iff for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$0 < |P - \hat{P}| < \delta \quad \Rightarrow \quad |f(P) - L| < \epsilon.$$

Remarks:

(a) In Cartesian coordinates $P = (x_1, \dots, x_n)$, $\hat{P} = (\hat{x}_1, \dots, \hat{x}_n)$. Then, $|P - \hat{P}|$ is the distance between points in \mathbb{R}^n ,

$$|P-\hat{P}|=|\overrightarrow{P\hat{P}}|=\sqrt{(x_1-\hat{x}_1)^2+\cdots+(x_n-\hat{x}_n)^2}.$$

(b) |f(P) - L| is the absolute value of real numbers.

The limit of functions $f : \mathbb{R}^2 \to \mathbb{R}$. Idea of the limit definition: Consider $f : \mathbb{R}^2 \to \mathbb{R}$. Then, $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ means that the closer (x, y) is to (x_0, y_0) then the closer the value of f(x, y) is to L.

Computing a limit by the definition

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function $f(x, y) = \frac{2yx^2}{x^2 + y^2}$ is not defined at (0,0).

First: Guess what the limit L is.

Along the line x = 0 the function is $f(0, y) = \frac{0}{y^2} = 0$.

Therefore, if *L* exists, it must be L = 0. Given ϵ , find δ .

Fix any number $\epsilon > 0$. Given that ϵ , find a number $\delta > 0$ such that

$$0 < \sqrt{(x-0)^2 + (y-0)^2} < \delta \quad \Rightarrow \quad \left| \frac{2yx^2}{x^2 + y^2} - 0 \right| < \epsilon.$$

Computing a limit by the definition

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0$, find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left|\frac{2yx^2}{x^2+y^2}\right| < \epsilon.$$

Recall: $x^2 \leqslant x^2 + y^2$, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$. Then

$$\left|\frac{2yx^2}{x^2+y^2}\right| = (2|y|)\frac{x^2}{x^2+y^2} \leqslant 2|y| = 2\sqrt{y^2} \leqslant 2\sqrt{x^2+y^2}.$$

Choose $\delta = \epsilon/2$. If $\sqrt{x^2 + y^2} < \delta$, then $\left|\frac{2yx^2}{x^2 + y^2}\right| < 2\delta = \epsilon$. We conclude that L = 0.

Properties of limits of functions

Theorem If $f, g : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, satisfying the conditions $\lim_{P \to \hat{P}} f(P) = L \text{ and } \lim_{P \to \hat{P}} g(P) = M, \text{ then holds}$ (a) $\lim_{P\to\hat{P}} f(P) \pm g(P) = L \pm M;$ (b) If $k \in \mathbb{R}$, then $\lim_{P \to \hat{P}} kf(P) = kL$; (c) $\lim_{P\to\hat{P}} f(P)g(P) = LM;$ (d) If $M \neq 0$, then $\lim_{P \to \hat{P}} \left[\frac{f(P)}{g(P)} \right] = \frac{L}{M}$. (e) If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim_{P \to \hat{P}} [f(P)]^{r/s} = L^{r/s}$. Remark: The Theorem above implies: If f = R/S is the quotient of two polynomials with $S(\hat{P}) \neq 0$, then $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

Limits of R/S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find

Example

Compute
$$\lim_{(x,y)\to(2,1)}\frac{x^2+2y-x}{\sqrt{x-y}}.$$

Solution: The function above is a rational function in x and y and its denominator is defined and does not vanish at (2, 1). Therefore

$$\lim_{(x,y)\to(2,1)}\frac{x^2+2y-x}{\sqrt{x-y}}=\frac{2^2+2(1)-2}{\sqrt{2-1}},$$

that is,

$$\lim_{(x,y)\to(2,1)}\frac{x^2+2y-x}{\sqrt{x-y}}=4.$$

 \triangleleft

Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$

Definition

A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, is called *continuous at* $\hat{P} \in D$ iff holds $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

Remarks:

- The definition above says three things:
 - (a) $f(\hat{P})$ is defined;
 - (b) $\lim_{P \to \hat{P}} f(P) = L$ exists;
 - (c) $f(\hat{P}) = L$.
- A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$ is *continuous* iff f is continuous at every point in D.
- Continuous functions have graphs without holes or jumps.

Continuous functions $f : \mathbb{R}^2 \to \mathbb{R}$

Example Compute $\lim_{(x,y)\to(\sqrt{\pi},0)} e^{\cos(x^2+y^2)}$.

Solution:

The function $f(x, y) = e^{\cos(x^2 + y^2)}$ is continuous for all $(x, y) \in \mathbb{R}^2$. Therefore,

$$\lim_{(x,y)\to(\sqrt{\pi},0)}e^{\cos(x^2+y^2)}=e^{\cos(\pi+0)}=e^{-1},$$

that is,

$$\lim_{(x,y)\to(\sqrt{\pi},0)}e^{\cos(x^2+y^2)}=\frac{1}{e}.$$

\leq	
~	

Two-path test for the non-existence of limits

Theorem

If a function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along two different paths as P approaches \hat{P} , then $\lim_{P \to \hat{P}} f(P)$ does not exist.

Remark: Consider the case $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.

lf

(a) $f(x, y) \rightarrow L_1$ along a path C_1 as $(x, y) \rightarrow (x_0, y_0)$, (b) $f(x, y) \rightarrow L_2$ along a path C_2 as $(x, y) \rightarrow (x_0, y_0)$, (c) $L_1 \neq L_2$,

then $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ does not exist.

Remark: When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits Example Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$. Solution: $f(x,y) = \frac{3x^2}{(x^2+2y^2)}$ is not continuous at (0,0). We try to show that the limit above does not exist. If path C_1 is the x-axis, (y = 0), then, $f(x,0) = \frac{3x^2}{x^2} = 3$, $\Rightarrow \lim_{(x,0)\to(0,0)} f(x,0) = 3$. If path C_2 is the y-axis, (x = 0), then, f(0,y) = 0, $\Rightarrow \lim_{(0,y)\to(0,0)} f(0,y) = 0$. Therefore, $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$ does not exist.

Two-path test for the non-existence of limits

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_m given by y = mx, with m a constant. That is,

$$f(x, mx) = \frac{3x^2}{x^2 + 2m^2x^2} = \frac{3}{1 + 2m^2}$$

The limits along these paths are:

$$\lim_{(x,mx)\to(0,0)} f(x,mx) = \frac{3}{1+2m^2}$$

which are different for each value of m.

This agrees with our conclusion: $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$ DNE.

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2)

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the **non-existence** of limits.
 - ► The sandwich test for the existence of limits.

The sandwich test for the existence of limits

Example

Compute
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
.

Solution: $f(x,y) = \frac{x^2y}{x^2 + y^2}$ is not continuous at (0,0).

The Two-Path Theorem does not prove non-existence of the limit. Because: Consider paths C_m given by y = mx, with $m \in \mathbb{R}$. Then

$$f(x, mx) = \frac{x^2 mx}{x^2 + m^2 x^2} = \frac{mx}{1 + m^2},$$

which implies $\lim_{(x,mx)\to(0,0)} f(x,mx) = 0, \quad \forall m \in \mathbb{R}.$

We cannot conclude that the limit does not exist. We cannot conclude that the limit exists.

The sandwich test for the existence of limits
Example
Compute
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
.
Solution: Recall: $\frac{x^2}{x^2+y^2} \leq 1$, for all $(x,y) \neq (0,0)$.
So, $\left|\frac{x^2y}{x^2+y^2}\right| = |y| \left(\frac{x^2}{x^2+y^2}\right) \leq |y|$, for all $(x,y) \neq (0,0)$. So,
 $\left|\frac{x^2y}{x^2+y^2}\right| \leq |y| \quad \Leftrightarrow \quad -|y| \leq \frac{x^2y}{x^2+y^2} \leq |y|$.
Since $\lim_{y\to 0} \pm |y| = 0$, the Sandwich Theorem with functions
 $g = -|y|$, $h = |y|$, implies
 $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$.