Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.

- Graphs, level surfaces.

Scalar functions of several variables

Definition

A scalar function of n variables is a function $f: D \subset \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set D is called the domain of the function, and the set R is called the range of the function.

Remark:

Comparison between $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

Functions of several variables

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the temperature T of this room. Each point (x, y, z) in the room is associated with a number, its temperature $T(x, y, z)$.
- Another example of a scalar function of three variables is the speed of the air in the room.
- An example of a vector-valued function of three variables, $\mathbf{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, is the velocity of the air in the room.

Scalar functions of several variables

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=x^{2}+y^{2}$ is defined.

Solution:

The function $f(x, y)=x^{2}+y^{2}$ is defined for all points $(x, y) \in \mathbb{R}^{2}$, therefore, $D=\mathbb{R}^{2}$.

Since $f(x, y)=x^{2}+y^{2} \geqslant 0$ for all $(x, y) \in D$, then the range
 space is $R=[0, \infty) . \quad \triangleleft$

Scalar functions of several variables

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=\sqrt{x-y}$ is defined.

Solution:

The function f is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y \geqslant 0$. So, $D=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant y\right\}$.

Since $f(x, y)=\sqrt{x-y} \geqslant 0$ for all $(x, y) \in D$, the range space is $R=[0, \infty)$.

Scalar functions of several variables

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=1 / \sqrt{x-y}$ is defined.
Solution:
The function f is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y>0$. So, $D=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\}$.

Since $f(x, y)=1 / \sqrt{x-y} \geqslant 0$ for all $(x, y) \in D$, the range space is $R=(0, \infty)$.

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Graphs, level surfaces.

On open and closed sets in \mathbb{R}^{n}

Remark: We first generalize from \mathbb{R}^{3} to \mathbb{R}^{n} the definition of a ball of radius r centered at \hat{P}_{c}.

Definition

An open ball of radius $r>0$ centered at $\hat{P}_{c}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$ is the set in \mathbb{R}^{n}, with $n \in \mathbb{N}$, given by
$B_{r}\left(\hat{P}_{c}\right)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}:\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}<r^{2}\right\}$.

Remark: An open ball $B_{r}\left(\hat{P}_{c}\right)$ contains the points inside a sphere of radius r centered at \hat{P}_{c} without the points of the sphere.

On open and closed sets in \mathbb{R}^{n}

Definition

A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called an interior point iff there is a ball $B_{r}(P) \subset S$. A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called a boundary point iff every ball $B_{r}(P)$ contains points in S and points outside S. The boundary of a set S is the set of all boundary points of S.

On open and closed sets in \mathbb{R}^{n}

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

On open and closed sets in \mathbb{R}^{n}

Example

Find and describe the maximum domain of the function $f(x, y)=\ln \left(x-y^{2}\right)$.

Solution:
The maximum domain of f is

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x>y^{2}\right\}
$$

D is an open, unbounded set. \triangleleft

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Graphs, level surfaces.

The graph of a function of two variables is a surface in \mathbb{R}^{3}

Definition

The graph of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^{3} of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z=f(x, y)$.

Example

Draw the graph of $f(x, y)=x^{2}+y^{2}$.
Solution: The graph of f is the surface $z=x^{2}+y^{2}$. This is a paraboloid along the z axis.

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Graphs, level surfaces.

Level curves, contour curves

Definition

The contour curves of a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ are the curves in \mathbb{R}^{3} given by the equation

$$
f(x, y)=k, \quad z=k, \quad(x, y) \in D, \quad k \in R
$$

The level curves of the function f are the curves in the domain $D \subset \mathbb{R}^{2}$ given by the equation

$$
f(x, y)=k, \quad(x, y) \in D, \quad k \in R .
$$

Remark: Contour curves are the intersection of the graph of f with horizontal planes $z=k$.

Remark: Level curves are the vertical translation of contour curves to the function domain.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Solution:

The level curves are solutions of the equation $x^{2}+y^{2}=k$ with $k \geqslant 0$. These curves are circles of radius \sqrt{k} in $D=\mathbb{R}^{2}$.

The contour curves are the circles $\left\{(x, y, z): x^{2}+y^{2}=k, z=k\right\}$.

Level curves, contour curves

Example

Find the maximum domain, range of, and graph the function $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Solution:

Since the denominator never vanishes, hence $D=\mathbb{R}^{2}$.
Since $0<\frac{1}{1+x^{2}+y^{2}} \leqslant 1$, the range of f is $R=(0,1]$.

The contour curves are circles on
 horizontal planes in $(0,1]$. \triangleleft

Level curves, contour curves

Example

Given the topographic map in the figure, which way do you choose to the summit?

1000

Solution:
From the east side. \triangleleft

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Graphs, level surfaces.

Scalar functions of three variables

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$, is the set of points in \mathbb{R}^{4} of the form $(x, y, z, f(x, y, z))$ for every $(x, y, z) \in D$.

Remark:
The graph a function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Definition

The level surfaces of a function $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$ are the surfaces in the domain $D \subset \mathbb{R}^{3}$ of f solutions of the equation $f(x, y, z)=k$, where $k \in R$ is a constant in the range of f.

Scalar functions of three variables

Example

Draw one level surface of the function $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$ $f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}$.

Solution:

The domain of f is $D=\mathbb{R}^{3}$, the range is $R=(0, \infty)$. For $k>0$ the level surfaces $f(x, y, z)=k$ are

$$
x^{2}+y^{2}+z^{2}=\frac{1}{k}
$$

spheres radius $R=\frac{1}{\sqrt{k}}$.

