Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.
- Functions of three variables.
 - Graphs, level surfaces.
Functions of several variables

Example

- An example of a scalar-valued function of two variables, \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) is the temperature \(T \) of a plane surface, say a table. Each point \((x, y)\) on the table is associated with a number, its temperature \(T(x, y) \).

- An example of a scalar-valued function of three variables, \(T : \mathbb{R}^3 \rightarrow \mathbb{R} \) is the temperature \(T \) of this room. Each point \((x, y, z)\) in the room is associated with a number, its temperature \(T(x, y, z) \).

- Another example of a scalar function of three variables is the speed of the air in the room.

- An example of a vector-valued function of three variables, \(\mathbf{v} : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \), is the velocity of the air in the room.

Scalar functions of several variables

Example

Find the maximum domain \(D \) and range \(R \) sets where the function \(f : D \subset \mathbb{R}^2 \rightarrow R \subset \mathbb{R} \) given by \(f(x, y) = x^2 + y^2 \) is defined.

Solution:

The function \(f(x, y) = x^2 + y^2 \) is defined for all points \((x, y)\) \(\in \mathbb{R}^2 \), therefore, \(D = \mathbb{R}^2 \).

Since \(f(x, y) = x^2 + y^2 \geq 0 \) for all \((x, y)\) \(\in D \), then the range space is \(R = [0, \infty) \).
Scalar functions of several variables

Example
Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \rightarrow R \subset \mathbb{R}$ given by $f(x, y) = \sqrt{x - y}$ is defined.

Solution:

The function f is defined for points $(x, y) \in \mathbb{R}^2$ such that $x - y \geq 0$. So, $D = \{(x, y) \in \mathbb{R}^2 : x \geq y\}$.

Since $f(x, y) = \sqrt{x - y} \geq 0$ for all $(x, y) \in D$, the range space is $R = [0, \infty)$.

Scalar functions of several variables

Example
Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \rightarrow R \subset \mathbb{R}$ given by $f(x, y) = \frac{1}{\sqrt{x - y}}$ is defined.

Solution:

The function f is defined for points $(x, y) \in \mathbb{R}^2$ such that $x - y > 0$. So, $D = \{(x, y) \in \mathbb{R}^2 : x > y\}$.

Since $f(x, y) = \frac{1}{\sqrt{x - y}} \geq 0$ for all $(x, y) \in D$, the range space is $R = (0, \infty)$.
Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- **On open, closed sets.**
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.
- Functions of three variables.
 - Graphs, level surfaces.

On open and closed sets in \mathbb{R}^n

Remark: We first generalize from \mathbb{R}^3 to \mathbb{R}^n the definition of a ball of radius r centered at \hat{P}_c.

Definition
An *open ball* of radius $r > 0$ centered at $\hat{P}_c = (\hat{x}_1, \cdots, \hat{x}_n)$ is the set in \mathbb{R}^n, with $n \in \mathbb{N}$, given by

$$B_r(\hat{P}_c) = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : (x_1 - \hat{x}_1)^2 + \cdots + (x_n - \hat{x}_n)^2 < r^2\}.$$

Remark: An open ball $B_r(\hat{P}_c)$ contains the points *inside* a sphere of radius r centered at \hat{P}_c *without* the points of the sphere.
On open and closed sets in \mathbb{R}^n

Definition

A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called an **interior point** iff there is a ball $B_r(P) \subset S$. A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called a **boundary point** iff every ball $B_r(P)$ contains points in S and points outside S. The **boundary** of a set S is the set of all boundary points of S.

On open and closed sets in \mathbb{R}^n

Definition

A set $S \in \mathbb{R}^n$, with $n \in \mathbb{N}$, is called **open** iff every point in S is an interior point. The set S is called **closed** iff S contains its boundary. A set S is called **bounded** iff S is contained in ball, otherwise S is called **unbounded**.
On open and closed sets in \mathbb{R}^n

Example
Find and describe the maximum domain of the function $f(x, y) = \ln(x - y^2)$.

Solution:
The maximum domain of f is

$$D = \{(x, y) \in \mathbb{R}^2 : x > y^2\}.$$

D is an open, unbounded set. ◄

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- **Functions of two variables:**
 - Graph of the function.
 - Level curves, contour curves.
- Functions of three variables.
 - Graphs, level surfaces.
The graph of a function of two variables is a surface in \mathbb{R}^3

Definition

The *graph* of a function $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^3 of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z = f(x, y)$.

Example

Draw the graph of $f(x, y) = x^2 + y^2$.

Solution: The graph of f is the surface $z = x^2 + y^2$. This is a paraboloid along the z axis.

Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- **Functions of two variables:**
 - Graph of the function.
 - *Level curves, contour curves.*
- Functions of three variables.
 - Graphs, level surfaces.
Level curves, contour curves

Definition
The contour curves of a function \(f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R} \) are the curves in \(\mathbb{R}^3 \) given by the equation

\[
f(x, y) = k, \quad z = k, \quad (x, y) \in D, \quad k \in R.
\]

The level curves of the function \(f \) are the curves in the domain \(D \subset \mathbb{R}^2 \) given by the equation

\[
f(x, y) = k, \quad (x, y) \in D, \quad k \in R.
\]

Remark: Contour curves are the intersection of the graph of \(f \) with horizontal planes \(z = k \).

Remark: Level curves are the vertical translation of contour curves to the function domain.

Example
Find and draw few level curves and contour curves for the function \(f(x, y) = x^2 + y^2 \).

Solution:
The level curves are solutions of the equation \(x^2 + y^2 = k \) with \(k \geq 0 \). These curves are circles of radius \(\sqrt{k} \) in \(D = \mathbb{R}^2 \).

The contour curves are the circles \(\{(x, y, z) : x^2 + y^2 = k, \ z = k\} \).
Example
Find the maximum domain, range of, and graph the function
\[f(x, y) = \frac{1}{1 + x^2 + y^2}. \]

Solution:
Since the denominator never vanishes, hence \(D = \mathbb{R}^2 \).
Since \(0 < \frac{1}{1 + x^2 + y^2} \leq 1 \), the range of \(f \) is \(R = (0, 1] \).
The contour curves are circles on horizontal planes in \((0, 1] \).

Example
Given the topographic map in the figure, which way do you choose to the summit?

Solution:
From the east side.
Scalar functions of several variables (Sect. 14.1)

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.
- Functions of three variables.
 - Graphs, level surfaces.

Scalar functions of three variables

Definition

The *graph* of a scalar function of three variables, \(f : D \subset \mathbb{R}^3 \rightarrow R \subset \mathbb{R} \), is the set of points in \(\mathbb{R}^4 \) of the form \((x, y, z, f(x, y, z))\) for every \((x, y, z) \in D\).

Remark:

The graph a function \(f : D \subset \mathbb{R}^3 \rightarrow \mathbb{R} \) requires four space dimensions. We cannot picture such graph.

Definition

The *level surfaces* of a function \(f : D \subset \mathbb{R}^3 \rightarrow R \subset \mathbb{R} \) are the surfaces in the domain \(D \subset \mathbb{R}^3 \) of \(f \) solutions of the equation \(f(x, y, z) = k \), where \(k \in R \) is a constant in the range of \(f \).
Scalar functions of three variables

Example
Draw one level surface of the function $f : D \subset \mathbb{R}^3 \rightarrow R \subset \mathbb{R}$

$$f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}.$$

Solution:
The domain of f is $D = \mathbb{R}^3$, the range is $R = (0, \infty)$. For $k > 0$ the level surfaces $f(x, y, z) = k$ are

$$x^2 + y^2 + z^2 = \frac{1}{k},$$

spheres radius $R = \frac{1}{\sqrt{k}}$. \triangleleft