

Scalar functions of several variables

Definition

A scalar function of *n* variables is a function $f : D \subset \mathbb{R}^n \to R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set *D* is called the *domain* of the function, and the set *R* is called the *range* of the function.

Remark:

Comparison between $f : \mathbb{R}^2 \to \mathbb{R}$ with $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$.

Scalar functions of several variables

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is defined.

Solution:

The function $f(x, y) = x^2 + y^2$ is defined for all points $(x, y) \in \mathbb{R}^2$, therefore, $D = \mathbb{R}^2$.

Since $f(x, y) = x^2 + y^2 \ge 0$ for all $(x, y) \in D$, then the range space is $R = [0, \infty)$.

Scalar functions of several variables

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = 1/\sqrt{x - y}$ is defined.

Solution:

The function f is defined for points $(x, y) \in \mathbb{R}^2$ such that x - y > 0. So, $D = \{(x, y) \in \mathbb{R}^2 : x > y\}.$

Since $f(x, y) = 1/\sqrt{x - y} \ge 0$ for all $(x, y) \in D$, the range space is $R = (0, \infty)$.

On open and closed sets in \mathbb{R}^n

Remark: We first generalize from \mathbb{R}^3 to \mathbb{R}^n the definition of a ball of radius *r* centered at \hat{P}_c .

Definition

An open ball of radius r > 0 centered at $\hat{P}_c = (\hat{x}_1, \dots, \hat{x}_n)$ is the set in \mathbb{R}^n , with $n \in \mathbb{N}$, given by

 $B_r(\hat{P}_c) = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : (x_1 - \hat{x}_1)^2 + \cdots + (x_n - \hat{x}_n)^2 < r^2\}.$

Remark: An open ball $B_r(\hat{P}_c)$ contains the points *inside* a sphere of radius r centered at \hat{P}_c without the points of the sphere.

Scalar functions of several variables (Sect. 14.1)
Functions of several variables.
On open, closed sets.
Functions of two variables:

Graph of the function.
Level curves, contour curves.

Functions of three variables.

Graphs, level surfaces.

Level curves, contour curves

Definition

The *contour curves* of a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ are the curves in \mathbb{R}^3 given by the equation

f(x,y) = k, z = k, $(x,y) \in D,$ $k \in R.$

The *level curves* of the function f are the curves in the domain $D \subset \mathbb{R}^2$ given by the equation

f(x,y) = k, $(x,y) \in D,$ $k \in R.$

Remark: Contour curves are the intersection of the graph of f with horizontal planes z = k.

Remark: Level curves are the vertical translation of contour curves to the function domain.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

Solution:

The level curves are solutions of the equation $x^2 + y^2 = k$ with $k \ge 0$. These curves are circles of radius \sqrt{k} in $D = \mathbb{R}^2$.

The contour curves are the circles $\{(x, y, z) : x^2 + y^2 = k, z = k\}.$

Level curves, contour curves

Example

Find the maximum domain, range of, and graph the function

$$f(x,y) = \frac{1}{1+x^2+y^2}$$

Solution:

Since the denominator never vanishes, hence $D = \mathbb{R}^2$.

Since $0 < \frac{1}{1 + x^2 + y^2} \leq 1$, the range of f is R = (0, 1].

The contour curves are circles on horizontal planes in (0, 1].

Level curves, contour curves Example Given the topographic map in the figure, which way do you choose to the summit? Solution: From the east side.

Scalar functions of three variables

Definition

The *graph* of a scalar function of three variables, $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$, is the set of points in \mathbb{R}^4 of the form (x, y, z, f(x, y, z)) for every $(x, y, z) \in D$.

Remark:

The graph a function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Definition

The *level surfaces* of a function $f : D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$ are the surfaces in the domain $D \subset \mathbb{R}^3$ of f solutions of the equation f(x, y, z) = k, where $k \in R$ is a constant in the range of f.

Scalar functions of three variables

Example

Draw one level surface of the function $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$ $f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}.$

 \triangleleft

Solution:

The domain of f is $D = \mathbb{R}^3$, the range is $R = (0, \infty)$. For k > 0 the level surfaces f(x, y, z) = k are

$$x^2 + y^2 + z^2 = \frac{1}{k}$$

spheres radius
$$R = \frac{1}{\sqrt{k}}$$
.

