
The length of a curve in space (Sect. 13.3)

I The length of a curve in space.

I The length function.

I Parametrizations of a curve.

I The length parametrization of a curve.

The length of a curve in space

Definition
The length or arc length of a curve in
the plane or in space is the limit of the
polygonal line length, as the polygonal
line approximates the original curve.
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Theorem
The length of a continuously
differentiable curve r : [a, b] → Rn,
with n=2,3, is the number

`ba =

∫ b

a

∣∣r′(t)∣∣ dt.
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The length of a curve in space

Recall: The length of r : [a, b] → R3 is `ba =

∫ b

a

∣∣r′(t)∣∣ dt.

I If the curve r is the path traveled by a particle in space, then
r′ = v is the velocity of the particle.

I The length is the integral in time of the particle speed |v(t)|.
I Therefore, the length of the curve is the distance traveled by

the particle.

I In Cartesian coordinates the functions r and r′ are given by

r(t) = 〈x(t), y(t), z(t)〉, r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Therefore the curve length is given by the expression

`ba =

∫ b

a

√[
x ′(t)

]2
+

[
y ′(t)

]2
+

[
z ′(t)

]2
dt.

The length of a curve in a plane

Example

Find the length of the curve r(t) = 〈r0 cos(t), r0 sin(t)〉, for
t ∈ [π/4, 3π/4], and r0 > 0.

Solution: Compute r′(t) = 〈−r0 sin(t), r0 cos(t)〉. The length of
the curve is given by the formula

` =

∫ 3π/4

π/4

√[
−r0 sin(t)

]2
+

[
r0 cos(t)

]2
dt

` =

∫ 3π/4

π/4

√
r2
0

([
− sin(t)

]2
+

[
cos(t)

]2)
dt =

∫ 3π/4

π/4
r0 dt.

Hence, ` =
π

2
r0. (The length of quarter circle of radius r0.) C



The length of a curve in a plane.

Example

Find the length of the spiral r(t) = 〈t cos(t), t sin(t)〉, for
t ∈ [0, t0].

Solution: The derivative vector is

r′(t) =
〈[
−t sin(t) + cos(t)

]
,
[
t cos(t) + sin(t)

]〉
,

|r′(t)|2 =
[
t2 sin2(t) + cos2(t)− 2t sin(t) cos(t)

]
+

[
t2 cos2(t) + sin2(t) + 2t sin(t) cos(t)

]
We obtain |r′(t)|2 = t2 + 1. The curve length is given by

`(t0) =

∫ t0

0

√
1 + t2 dt = ln

(
t +

√
1 + t2

)∣∣∣t0
0
.

We conclude that `(t0) = ln
(
t0 +

√
1 + t2

0

)
. C

The length of a curve in space.

Example

Find the length of the curve
r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉, for
t ∈ [0, π].
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Solution: The derivative vector is

r′(t) = 〈−12 sin(2t), 12 cos(2t), 5〉,

|r′(t)|2 = 144
[
sin2(2t) + cos2(2t)

]
+ 25 = 169 = (13)2.

The curve length is

` =

∫ π

0
13 dt = 13 t

∣∣π
0

⇒ ` = 13π. C



The length of a curve in space.

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.
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`N =
N−1∑
n=0

|r(tn+1)− r(tn)|, {a = t0, t1, · · · , tN−1, tN = b},

`N '
N−1∑
n=0

|r′(tn)| (tn+1 − tn)
N→∞−→

∫ b

a
|r′(t)| dt.

The arc length of a curve in space (Sect. 13.3)

I The length of a curve in space.

I The length function.

I Parametrizations of a curve.

I The length parametrization of a curve.



The length function

Definition
The length function of a continuously differentiable vector function
r is given by

`(t) =

∫ t

t0

|r′(τ)|dτ.

Remarks:

(a) The value `(t) of the length function is the length along the
curve r from t0 to t.

(b) If the function r is the position of a moving particle as function
of time, then the value `(t) is the distance traveled by the
particle from the time t0 to t.

The length function

Example

Find the arc length function for the
curve r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉,
starting at t = 1.
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Solution: We have found that |r′(t)| = 13. Therefore,

`(t) =

∫ t

1
13 dτ ⇒ `(t) = 13 (t − 1). C



The length function

Example

Given the position function in time
r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉, find the
position vector r(t0) located at a length
`0 = 4 from the initial position r(0).
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Solution: We have found that the length function for r starting at
t = 1 is ˆ̀(t) = 13 (t − 1).

It is simple to see that the length function for r starting at t = 0 is
`(t) = 13 t.

Since t = `/13, the time at `0 = 4 is t0 = 4/13.

Therefore, the position vector at `0 = 4 is given by

r(t0) = 〈6 cos(8/13), 6 sin(8/13), 20/13〉. C

The arc length of a curve in space (Sect. 13.3)

I The length of a curve in space.

I The length function.

I Parametrizations of a curve.

I The length parametrization of a curve.



Parametrizations of a curve

Remark:
A curve in space can be represented by different vector functions.

Example

The unit circle in R2 is the curve represented by the following
vector functions:

I r1(t) = 〈cos(t), sin(t)〉;
I r2(t) = 〈cos(5t), sin(5t)〉;
I r3(t) = 〈cos(et), sin(et)〉.

Remark:
The curve in space is the same for all three functions above. The
vector r moves along the curve at different speeds for the different
parametrizations.

Parametrizations of a curve

Remarks:

I If the vector function r represents the position in space of a
moving particle, then there is a preferred parameter to
describe the motion. The time t.

I Another preferred parameter useful to describe a moving
particle is the distance traveled by the particle. The length `.

I The latter parameter is defined for every curve, either the
curve represents motion or not.

I A common problem when describing motion is the following:
Given a vector function parametrized by the time t, switch the
curve parameter to the curve length `.

I This is called the curve length parametrization.



The arc length of a curve in space (Sect. 13.3)

I The length of a curve in space.

I The length function.

I Parametrizations of a curve.

I The length parametrization of a curve.

The length parametrization of a curve

Problem:
Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

(a) With the function values r(t) compute the arc length function
`(t), starting at some t = t0.

(b) Invert the function values `(t) to find the function values t(`).

(c) Example: If `(t) = 3et/2, then t(`) = 2 ln(`/3).

(d) Compute the composition function r̂(`) = r(t(`)). That is,
replace t by t(`) in the function values r(t).

Remark: The function values r̂(`) are the parametrization of the
function values r(t) using the curve length as the new parameter.



The length parametrization of a curve

Example

Find the curve length parametrization of the vector function
r(t) = 〈4 cos(t), 4 sin(t), 3t〉 starting at t = 1.

Solution: First find the derivative function:

r′(t) = 〈−4 sin(t), 4 cos(t), 3〉.

Hence, |r′(t)|2 = 42 sin2(t) + 42 cos2(t) + 32 = 16 + 9 = 52.

Find the arc length function: `(t) =

∫ t

1
5 dτ ⇒ `(t) = 5(t − 1).

Invert the equation above: t =
`

5
+ 1, that is, t =

(` + 5)

5
.

So, r̂(`) =
〈
4 cos

[(` + 5)

5

]
, 4 sin

[(` + 5)

5

]
,
3(` + 5)

5

〉
. C

The length parametrization of a curve

Theorem
If the continuously differentiable curve r has length parametrization

values r̂(`), then u(`) =
d r̂

d`
is a unit vector tangent to the curve.

Proof:
Given the function values r(t), let r̂(`) be the reparametrization of

r with the curve length function `(t) =

∫ t

t0

|r′(τ)| dτ .

Notice that
d`

dt
= |r′(t)| and

dt

d`
=

1

|r′(t)|
.

Therefore, u(`) =
d r̂(`)

d`
=

dr(t)

dt

dt

d`
=

r′(t)

|r′(t)|
.

We conclude that |u(`)| = 1.



The length parametrization of a curve

Example

Find a unit vector tangent to the curve given by
r(t) = 〈4 cos(t), 4 sin(t), 3t〉 for t > 0.

Solution: Reparametrize the curve using the arc length.
Recall: |r′(t)| = 5, and `(t) = 5t, so t = `/5. We get

r̂(`) = 〈4 cos(`/5), 4 sin(`/5), 3`/5〉.

Therefore, a unit tangent vector is

u(`) =
d r̂

d`
⇒ u(`) =

〈
−4

5
sin(`/5),

4

5
cos(`/5),

3

5

〉
. C

We can verify that this is a unit vector, since

|u(`)|2 =
(4

5

)2[
sin2(`/5) + cos2(`/5)

]
+

(3

5

)2
⇒ |u(`)| = 1.


