The length of a curve in space (Sect. 13.3)

- The length of a curve in space.
- The length function.
- Parametrizations of a curve.
- The length parametrization of a curve.

The length of a curve in space

Definition

The length or arc length of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

Theorem

The length of a continuously differentiable curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is the number

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

The length of a curve in space
Recall: The length of $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$ is $\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.

- If the curve \mathbf{r} is the path traveled by a particle in space, then $\mathbf{r}^{\prime}=\mathbf{v}$ is the velocity of the particle.
- The length is the integral in time of the particle speed $|\mathbf{v}(t)|$.
- Therefore, the length of the curve is the distance traveled by the particle.
- In Cartesian coordinates the functions \mathbf{r} and \mathbf{r}^{\prime} are given by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad \mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Therefore the curve length is given by the expression

$$
\ell_{b a}=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

The length of a curve in a plane

Example

Find the length of the curve $\mathbf{r}(t)=\left\langle r_{0} \cos (t), r_{0} \sin (t)\right\rangle$, for $t \in[\pi / 4,3 \pi / 4]$, and $r_{0}>0$.

Solution: Compute $\mathbf{r}^{\prime}(t)=\left\langle-r_{0} \sin (t), r_{0} \cos (t)\right\rangle$. The length of the curve is given by the formula

$$
\begin{gathered}
\ell=\int_{\pi / 4}^{3 \pi / 4} \sqrt{\left[-r_{0} \sin (t)\right]^{2}+\left[r_{0} \cos (t)\right]^{2}} d t \\
\ell=\int_{\pi / 4}^{3 \pi / 4} \sqrt{r_{0}^{2}\left([-\sin (t)]^{2}+[\cos (t)]^{2}\right)} d t=\int_{\pi / 4}^{3 \pi / 4} r_{0} d t
\end{gathered}
$$

Hence, $\ell=\frac{\pi}{2} r_{0}$. (The length of quarter circle of radius r_{0}.)

The length of a curve in a plane.

Example

Find the length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t)= & \langle[-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

We obtain $\left|\mathbf{r}^{\prime}(t)\right|^{2}=t^{2}+1$. The curve length is given by
$\ell\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t=\left.\ln \left(t+\sqrt{1+t^{2}}\right)\right|_{0} ^{t_{0}}$.
We conclude that $\ell\left(t_{0}\right)=\ln \left(t_{0}+\sqrt{1+t_{0}^{2}}\right)$.

The length of a curve in space.

Example

Find the length of the curve
$\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, for $t \in[0, \pi]$.

Solution: The derivative vector is

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\langle-12 \sin (2 t), 12 \cos (2 t), 5\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2}=144\left[\sin ^{2}(2 t)+\cos ^{2}(2 t)\right]+25=169=(13)^{2}
\end{gathered}
$$

The curve length is

$$
\ell=\int_{0}^{\pi} 13 d t=\left.13 t\right|_{0} ^{\pi} \Rightarrow \quad \ell=13 \pi
$$

The length of a curve in space.

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

$$
\begin{gathered}
\ell_{N}=\sum_{n=0}^{N-1}\left|\mathbf{r}\left(t_{n+1}\right)-\mathbf{r}\left(t_{n}\right)\right|, \quad\left\{a=t_{0}, t_{1}, \cdots, t_{N-1}, t_{N}=b\right\}, \\
\ell_{N} \simeq \sum_{n=0}^{N-1}\left|\mathbf{r}^{\prime}\left(t_{n}\right)\right|\left(t_{n+1}-t_{n}\right) \xrightarrow{N \rightarrow \infty} \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
\end{gathered}
$$

The arc length of a curve in space (Sect. 13.3)

- The length of a curve in space.
- The length function.
- Parametrizations of a curve.
- The length parametrization of a curve.

The length function

Definition

The length function of a continuously differentiable vector function r is given by

$$
\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

Remarks:

(a) The value $\ell(t)$ of the length function is the length along the curve \mathbf{r} from t_{0} to t.
(b) If the function \mathbf{r} is the position of a moving particle as function of time, then the value $\ell(t)$ is the distance traveled by the particle from the time t_{0} to t.

The length function

Example

Find the arc length function for the curve $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, starting at $t=1$.

Solution: We have found that $\left|\mathbf{r}^{\prime}(t)\right|=13$. Therefore,

$$
\ell(t)=\int_{1}^{t} 13 d \tau \Rightarrow \ell(t)=13(t-1)
$$

The length function

Example

Given the position function in time $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, find the position vector $\mathbf{r}\left(t_{0}\right)$ located at a length $\ell_{0}=4$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the length function for \mathbf{r} starting at $t=1$ is $\hat{\ell}(t)=13(t-1)$.

It is simple to see that the length function for \mathbf{r} starting at $t=0$ is $\ell(t)=13 t$.
Since $t=\ell / 13$, the time at $\ell_{0}=4$ is $t_{0}=4 / 13$.
Therefore, the position vector at $\ell_{0}=4$ is given by

$$
\mathbf{r}\left(t_{0}\right)=\langle 6 \cos (8 / 13), 6 \sin (8 / 13), 20 / 13\rangle
$$

The arc length of a curve in space (Sect. 13.3)

- The length of a curve in space.
- The length function.
- Parametrizations of a curve.
- The length parametrization of a curve.

Parametrizations of a curve

Remark:
A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^{2} is the curve represented by the following vector functions:

- $\mathbf{r}_{1}(t)=\langle\cos (t), \sin (t)\rangle ;$
- $\mathbf{r}_{2}(t)=\langle\cos (5 t), \sin (5 t)\rangle ;$
- $\mathbf{r}_{3}(t)=\left\langle\cos \left(e^{t}\right), \sin \left(e^{t}\right)\right\rangle$.

Remark:

The curve in space is the same for all three functions above. The vector \mathbf{r} moves along the curve at different speeds for the different parametrizations.

Parametrizations of a curve

Remarks:

- If the vector function \mathbf{r} represents the position in space of a moving particle, then there is a preferred parameter to describe the motion. The time t.
- Another preferred parameter useful to describe a moving particle is the distance traveled by the particle. The length ℓ.
- The latter parameter is defined for every curve, either the curve represents motion or not.
- A common problem when describing motion is the following: Given a vector function parametrized by the time t, switch the curve parameter to the curve length ℓ.
- This is called the curve length parametrization.
- The length of a curve in space.
- The length function.
- Parametrizations of a curve.
- The length parametrization of a curve.

The length parametrization of a curve

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

(a) With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.
(b) Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
(c) Example: If $\ell(t)=3 e^{t / 2}$, then $t(\ell)=2 \ln (\ell / 3)$.
(d) Compute the composition function $\hat{\mathbf{r}}(\ell)=\mathbf{r}(t(\ell))$. That is, replace t by $t(\ell)$ in the function values $\mathbf{r}(t)$.

Remark: The function values $\hat{\mathbf{r}}(\ell)$ are the parametrization of the function values $\mathbf{r}(t)$ using the curve length as the new parameter.

The length parametrization of a curve

Example

Find the curve length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=1$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

Hence, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=4^{2} \sin ^{2}(t)+4^{2} \cos ^{2}(t)+3^{2}=16+9=5^{2}$.
Find the arc length function: $\ell(t)=\int_{1}^{t} 5 d \tau \Rightarrow \ell(t)=5(t-1)$.
Invert the equation above: $t=\frac{\ell}{5}+1$, that is, $t=\frac{(\ell+5)}{5}$.
So, $\hat{\boldsymbol{r}}(\ell)=\left\langle 4 \cos \left[\frac{(\ell+5)}{5}\right], 4 \sin \left[\frac{(\ell+5)}{5}\right], \frac{3(\ell+5)}{5}\right\rangle$.

The length parametrization of a curve

Theorem

If the continuously differentiable curve \mathbf{r} has length parametrization values $\hat{\mathbf{r}}(\ell)$, then $\mathbf{u}(\ell)=\frac{d \hat{\mathbf{r}}}{d \ell}$ is a unit vector tangent to the curve.

Proof:

Given the function values $\mathbf{r}(t)$, let $\hat{\mathbf{r}}(\ell)$ be the reparametrization of \mathbf{r} with the curve length function $\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.
Notice that $\frac{d \ell}{d t}=\left|\mathbf{r}^{\prime}(t)\right|$ and $\frac{d t}{d \ell}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}$.
Therefore, $\mathbf{u}(\ell)=\frac{d \hat{\mathbf{r}}(\ell)}{d \ell}=\frac{d \mathbf{r}(t)}{d t} \frac{d t}{d \ell}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.
We conclude that $|\mathbf{u}(\ell)|=1$.

The length parametrization of a curve

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.

Solution: Reparametrize the curve using the arc length.
Recall: $\left|\mathbf{r}^{\prime}(t)\right|=5$, and $\ell(t)=5 t$, so $t=\ell / 5$. We get

$$
\hat{\mathbf{r}}(\ell)=\langle 4 \cos (\ell / 5), 4 \sin (\ell / 5), 3 \ell / 5\rangle .
$$

Therefore, a unit tangent vector is

$$
\mathbf{u}(\ell)=\frac{d \hat{\mathbf{r}}}{d \ell} \Rightarrow \mathbf{u}(\ell)=\left\langle-\frac{4}{5} \sin (\ell / 5), \frac{4}{5} \cos (\ell / 5), \frac{3}{5}\right\rangle .
$$

We can verify that this is a unit vector, since

$$
|\mathbf{u}(\ell)|^{2}=\left(\frac{4}{5}\right)^{2}\left[\sin ^{2}(\ell / 5)+\cos ^{2}(\ell / 5)\right]+\left(\frac{3}{5}\right)^{2} \Rightarrow|\mathbf{u}(\ell)|=1
$$

