

The length of a curve in space

Definition

The *length* or *arc length* of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

Theorem

The length of a continuously differentiable curve $\mathbf{r} : [a, b] \to \mathbb{R}^n$, with n=2,3, is the number

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

The length of a curve in space

Recall: The length of $\mathbf{r} : [a, b] \to \mathbb{R}^3$ is $\ell_{ba} = \int_a^b |\mathbf{r}'(t)| dt$.

- If the curve r is the path traveled by a particle in space, then
 r' = v is the velocity of the particle.
- The length is the integral in time of the particle speed $|\mathbf{v}(t)|$.
- Therefore, the length of the curve is the distance traveled by the particle.
- \blacktriangleright In Cartesian coordinates the functions r and r' are given by

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \qquad \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Therefore the curve length is given by the expression

$$\ell_{ba} = \int_{a}^{b} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2} + \left[z'(t)\right]^{2}} \, dt.$$

The length of a curve in a plane

Example

Find the length of the curve $\mathbf{r}(t) = \langle r_0 \cos(t), r_0 \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$, and $r_0 > 0$.

Solution: Compute $\mathbf{r}'(t) = \langle -r_0 \sin(t), r_0 \cos(t) \rangle$. The length of the curve is given by the formula

$$\ell = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r_0 \sin(t)\right]^2 + \left[r_0 \cos(t)\right]^2} dt$$

$$\ell = \int_{\pi/4}^{3\pi/4} \sqrt{r_0^2 (\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2)} \, dt = \int_{\pi/4}^{3\pi/4} r_0 \, dt.$$

Hence, $\ell = \frac{\pi}{2} r_0$. (The length of quarter circle of radius r_0 .) \lhd

The length of a curve in a plane.

Example

Find the length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \left\langle \left[-t\sin(t) + \cos(t) \right], \left[t\cos(t) + \sin(t) \right] \right\rangle,$$
$$|\mathbf{r}'(t)|^2 = \left[t^2\sin^2(t) + \cos^2(t) - 2t\sin(t)\cos(t) \right]$$
$$+ \left[t^2\cos^2(t) + \sin^2(t) + 2t\sin(t)\cos(t) \right]$$

We obtain $|\mathbf{r}'(t)|^2 = t^2 + 1$. The curve length is given by $\ell(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt = \ln\left(t+\sqrt{1+t^2}\right)\Big|_0^{t_0}$.

We conclude that $\ell(t_0) = \ln(t_0 + \sqrt{1+t_0^2}).$

The length of a curve in space.

Example Find the length of the curve $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, for $t \in [0, \pi]$. r(0)

 \triangleleft

Solution: The derivative vector is

$$\mathbf{r}'(t) = \langle -12\sin(2t), 12\cos(2t), 5 \rangle,$$

 $|\mathbf{r}'(t)|^2 = 144[\sin^2(2t) + \cos^2(2t)] + 25 = 169 = (13)^2.$

The curve length is

$$\ell = \int_0^{\pi} 13 \, dt = 13 \, t \big|_0^{\pi} \quad \Rightarrow \quad \ell = 13\pi. \qquad \vartriangleleft$$

The length function

Definition

The *length function* of a continuously differentiable vector function \mathbf{r} is given by

$$\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d au$$

Remarks:

- (a) The value $\ell(t)$ of the length function is the length along the curve **r** from t_0 to t.
- (b) If the function **r** is the position of a moving particle as function of time, then the value $\ell(t)$ is the distance traveled by the particle from the time t_0 to t.

The length function

Example

Find the arc length function for the curve $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, starting at t = 1.

Solution: We have found that $|\mathbf{r}'(t)| = 13$. Therefore,

$$\ell(t) = \int_1^t 13 \, d\tau \quad \Rightarrow \quad \ell(t) = 13 \, (t-1). \quad \lhd$$

The length function

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 4$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the length function for **r** starting at t = 1 is $\hat{\ell}(t) = 13(t-1)$.

It is simple to see that the length function for **r** starting at t = 0 is $\ell(t) = 13 t$.

Since $t = \ell/13$, the time at $\ell_0 = 4$ is $t_0 = 4/13$.

Therefore, the position vector at $\ell_0 = 4$ is given by

 $\mathbf{r}(t_0) = \langle 6\cos(8/13), 6\sin(8/13), 20/13 \rangle.$

 \triangleleft

The arc length of a curve in space (Sect. 13.3)

- The length of a curve in space.
- ► The length function.
- ► Parametrizations of a curve.
- ► The length parametrization of a curve.

Parametrizations of a curve

Remark:

A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^2 is the curve represented by the following vector functions:

- $\blacktriangleright \mathbf{r}_1(t) = \langle \cos(t), \sin(t) \rangle;$
- $\mathbf{r}_2(t) = \langle \cos(5t), \sin(5t) \rangle;$
- $\blacktriangleright \mathbf{r}_3(t) = \langle \cos(e^t), \sin(e^t) \rangle.$

Remark:

The curve in space is the same for all three functions above. The vector \mathbf{r} moves along the curve at different speeds for the different parametrizations.

Parametrizations of a curve

Remarks:

- If the vector function r represents the position in space of a moving particle, then there is a preferred parameter to describe the motion. The time t.
- Another preferred parameter useful to describe a moving particle is the distance traveled by the particle. The length *l*.
- The latter parameter is defined for every curve, either the curve represents motion or not.
- A common problem when describing motion is the following: Given a vector function parametrized by the time *t*, switch the curve parameter to the curve length *ℓ*.
- ► This is called the curve length parametrization.

The length parametrization of a curve

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- (a) With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- (b) Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- (c) Example: If $\ell(t) = 3e^{t/2}$, then $t(\ell) = 2\ln(\ell/3)$.
- (d) Compute the composition function $\hat{\mathbf{r}}(\ell) = \mathbf{r}(t(\ell))$. That is, replace t by $t(\ell)$ in the function values $\mathbf{r}(t)$.

Remark: The function values $\hat{\mathbf{r}}(\ell)$ are the parametrization of the function values $\mathbf{r}(t)$ using the curve length as the new parameter.

The length parametrization of a curve Example Find the curve length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 1. Solution: First find the derivative function: $\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle$. Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$. Find the arc length function: $\ell(t) = \int_1^t 5 \, d\tau \Rightarrow \ell(t) = 5(t-1)$. Invert the equation above: $t = \frac{\ell}{5} + 1$, that is, $t = \frac{(\ell+5)}{5}$. So, $\hat{\mathbf{r}}(\ell) = \langle 4\cos\left[\frac{(\ell+5)}{5}\right], 4\sin\left[\frac{(\ell+5)}{5}\right], \frac{3(\ell+5)}{5} \rangle$.

The length parametrization of a curve

Theorem

If the continuously differentiable curve **r** has length parametrization values $\hat{\mathbf{r}}(\ell)$, then $\mathbf{u}(\ell) = \frac{d\hat{\mathbf{r}}}{d\ell}$ is a unit vector tangent to the curve.

Proof:

Given the function values $\mathbf{r}(t)$, let $\hat{\mathbf{r}}(\ell)$ be the reparametrization of \mathbf{r} with the curve length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau$.

Notice that $\frac{d\ell}{dt} = |\mathbf{r}'(t)|$ and $\frac{dt}{d\ell} = \frac{1}{|\mathbf{r}'(t)|}$.

Therefore,
$$\mathbf{u}(\ell) = \frac{d\hat{\mathbf{r}}(\ell)}{d\ell} = \frac{d\mathbf{r}(t)}{dt} \frac{dt}{d\ell} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

We conclude that $|\mathbf{u}(\ell)| = 1$.

The length parametrization of a curve

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Solution: Reparametrize the curve using the arc length. Recall: $|\mathbf{r}'(t)| = 5$, and $\ell(t) = 5t$, so $t = \ell/5$. We get

 $\hat{\mathbf{r}}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$

Therefore, a unit tangent vector is

$$\mathbf{u}(\ell) = \frac{d\hat{\mathbf{r}}}{d\ell} \quad \Rightarrow \quad \mathbf{u}(\ell) = \left\langle -\frac{4}{5}\sin(\ell/5), \frac{4}{5}\cos(\ell/5), \frac{3}{5}\right\rangle. \quad \triangleleft$$

We can verify that this is a unit vector, since

$$|\mathbf{u}(\ell)|^2 = \left(\frac{4}{5}\right)^2 \left[\sin^2(\ell/5) + \cos^2(\ell/5)\right] + \left(\frac{3}{5}\right)^2 \quad \Rightarrow \quad |\mathbf{u}(\ell)| = 1.$$