

Integration of vector functions

Definition

An *antiderivative* of a vector function \mathbf{v} is any vector valued function \mathbf{V} such that $\mathbf{V}' = \mathbf{v}$.

Remark: Antiderivatives are also called *indefinite integrals*, or *primitives*, they are denoted as $\int \mathbf{v}(t) dt$, that is,

$$\int \mathbf{v}(t) \, dt = \mathbf{V}(t) + \mathbf{C},$$

where **C** is a constant vector in Cartesian coordinates.

Example

Verify that $\mathbf{V} = \langle (-\cos(3t)/3 + 1), (\sin(t) - 2), (e^{2t}/2 + 2) \rangle$ is an antiderivative of $\mathbf{v} = \langle \sin(3t), \cos(t), e^{2t} \rangle$.

Solution: $\mathbf{V}' = \langle (-\cos(3t)/3 + 1)', (\sin(t) - 2)', (e^{2t}/2 + 2)' \rangle = \mathbf{v}.$

Integrals of vector functions.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is a primitive of the velocity,

$$\mathbf{r}(t) = \int \mathbf{v}(t) dt + \mathbf{C} = \langle t^2, \sin(t), -\cos(t) \rangle + \langle c_x, c_y, c_z \rangle,$$

with $\mathbf{C} = \langle c_x, c_y, c_z \rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$\langle 1,1,1
angle = \mathsf{r}(0) = \langle 0,0,-1
angle + \langle c_x,c_y,c_z
angle,$$

that is, $c_x = 1$, $c_y = 1$, $c_z = 2$.

The position function is $\mathbf{r}(t) = \langle t^2 + 1, \sin(t) + 1, -\cos(t) + 2 \rangle$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is the antiderivative of the acceleration:

$$\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle,$$

where $\mathbf{v}_0 = \langle v_{0x}, v_{0y}, v_{0z} \rangle$ is fixed by the initial condition.

$$\mathbf{v}(0) = \langle 0, 1, 1
angle = \langle v_{0x}, v_{0y}, v_{0z}
angle$$

The velocity function is $\mathbf{v}(t) = \langle 0, 1, (-10t+1) \rangle$.

The position is $\mathbf{r}(t) = \langle r_{0x}, (t + r_{0y}), (-5t^2 + t + r_{0z}) \rangle$, and

$$\mathbf{r}(0) = \langle 1, 0, 1 \rangle = \langle r_{0x}, r_{0y}, r_{0z} \rangle,$$

The obtain that $\mathbf{r}(t) = \langle 1, t, (-5t^2 + t + 1) \rangle$.

Integrals of vector functions.

Definition

The *definite integral* of an integrable vector function $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ on the interval [a, b] is given by

$$\int_{a}^{b} \mathbf{r}(t) dt = \left\langle \int_{a}^{b} x(t) dt, \int_{a}^{b} y(t) dt, \int_{a}^{b} z(t) dt \right\rangle$$

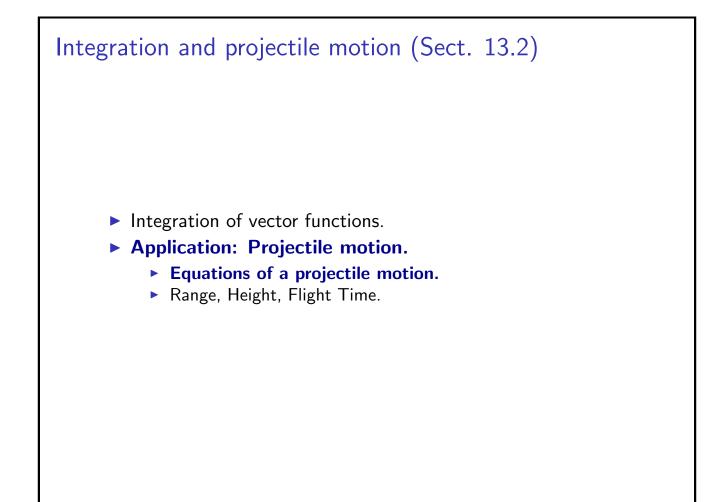
Example Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution: We compute an antiderivative and we evaluate the result,

$$\mathbf{I} = \int_0^{\pi} \mathbf{r}(t) dt = \int_0^{\pi} \langle \cos(t), \sin(t), t \rangle dt.$$

Integrals of vector functions.

Example Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$. Solution: $\mathbf{I} = \int_0^{\pi} \mathbf{r}(t) dt = \int_0^{\pi} \langle \cos(t), \sin(t), t \rangle dt.$ $\mathbf{I} = \left\langle \int_0^{\pi} \cos(t) dt, \int_0^{\pi} \sin(t) dt, \int_0^{\pi} t dt \right\rangle,$ $\mathbf{I} = \left\langle \sin(t) \Big|_0^{\pi}, -\cos(t) \Big|_0^{\pi}, \frac{t^2}{2} \Big|_0^{\pi} \right\rangle$ $\mathbf{I} = \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle \quad \Rightarrow \quad \int_0^{\pi} \mathbf{r}(t) dt = \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle. \quad \triangleleft$



Equations of a projectile motion

Remark: Projectile motion is the position of a point particle moving near the Earth surface subject to gravitational attraction.

Theorem

The motion of a particle with initial velocity \mathbf{v}_0 and position \mathbf{r}_0 subject to an acceleration $\mathbf{a} = -g\mathbf{k}$, where g is a constant, is

$$\mathbf{r}(t) = -\frac{g}{2}t^2\mathbf{k} + \mathbf{v}_0t + \mathbf{r}_0.$$

Remarks:

(a) The equation above in vector components is

$$\mathbf{r}(t) = \left\langle (v_{0x}t + r_{0x}), (v_{0y}t + r_{0y}), \left(-\frac{g}{2}t^2 + v_{0z}t + r_{0z}\right) \right\rangle,$$

where $\mathbf{v}_0 = \langle v_{0x}, v_{0y}, v_{0z} \rangle$ and $\mathbf{r}_0 = \langle r_{0x}, r_{0y}, r_{0z} \rangle.$

(b) The motion occurs in a plane. We describe it with vectors in the plane \mathbb{R}^2 . We use the coordinates x, y, only.

Equations of a projectile motion Remark: Same Theorem, written in x, y coordinates in \mathbb{R}^2 . Theorem The motion of a particle with initial velocity $\mathbf{v}_0 = \mathbf{v}_{0x}\mathbf{i} + \mathbf{v}_{0y}\mathbf{j}$ and position $\mathbf{r}_0 = r_{0x}\mathbf{i} + r_{0y}\mathbf{j}$ subject to the acceleration $\mathbf{a} = -g\mathbf{j}$, where g is a constant, is $\mathbf{r}(t) = -\frac{g}{2}\mathbf{j} + \mathbf{v}_0t + \mathbf{r}_0$, equivalently, $\mathbf{r}(t) = (\mathbf{v}_{0x}t + r_{0x})\mathbf{i} + (-\frac{g}{2}t^2 + \mathbf{v}_{0y}t + r_{0y})\mathbf{j}$. Proof: Since $\mathbf{r}''(t) = -g\mathbf{j}$, then $\mathbf{r}'(t) = c_x\mathbf{i} + (-gt + c_y)\mathbf{j}$. $\mathbf{r}'(0) = \mathbf{v}_{0x}\mathbf{i} + \mathbf{v}_{0y}\mathbf{j} = c_x\mathbf{i} + c_y\mathbf{j} \Rightarrow \mathbf{r}'(t) = \mathbf{v}_{0x}\mathbf{i} + (-gt + \mathbf{v}_{0y})\mathbf{j}$. One more integration, $\mathbf{r}(t) = (d_x + \mathbf{v}_{0x}t)\mathbf{i} + (d_y + \mathbf{v}_{0y}t - \frac{g}{2}t^2)\mathbf{j}$. The initial condition $\mathbf{r}(0) = r_{0x}\mathbf{i} + r_{0y}\mathbf{j} = d_x\mathbf{i} + d_y\mathbf{j}$, implies that $\mathbf{r}(t) = (v_{0x}t + r_{0x})\mathbf{i} + (-\frac{g}{2}t^2 + \mathbf{v}_{0y}t + r_{0y})\mathbf{j}$.

Equations of a projectile motion

Example

Find the position function and the trajectory of a projectile with initial speed $|\mathbf{v}_0| = 4$ m/s, launched from the coordinate system origin with an elevation angle of $\theta = \pi/3$.

Solution: The projectile acceleration is $\mathbf{a} = -g\mathbf{j}$, with g = 10 m/s. Therefore, $\mathbf{v}(t) = (-10t + v_{0y})\mathbf{j} + v_{0x}\mathbf{i}$, where

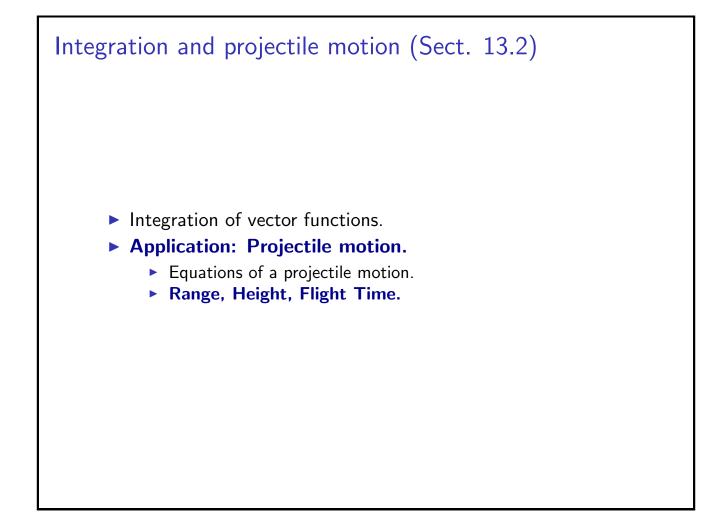
$$v_{0y} = |\mathbf{v}_0|\sin(\theta) = 4\frac{\sqrt{3}}{2} = 2\sqrt{3}, \quad v_{0x} = |\mathbf{v}_0|\cos(\theta) = 4\frac{1}{2} = 2.$$

Since $v(t) = (-10t + 2\sqrt{3})j + 2i$ and $r_0 = 0$, then

$$\mathbf{r}(t) = (-5t^2 + 2\sqrt{3}t)\mathbf{j} + 2t\mathbf{i}.$$

Since $y(t) = -5t^2 + 2\sqrt{3}t$ and x(t) = 2t, the trajectory is

$$y(x) = -5\left(\frac{x^2}{4}\right) + 2\sqrt{3}\frac{x}{2} \Rightarrow y(x) = -\frac{5}{4}x^2 + \sqrt{3}x.$$



Range, Height, Flight Time

Theorem

The the range x_r , height y_h , and the fight time t_r of a projectile launched from the origin with initial velocity $\mathbf{v} = v_{0y}\mathbf{j} + v_{0x}\mathbf{i}$ are

$$x_r = rac{2v_{0x}v_{0y}}{g}, \qquad y_h = rac{(v_{0y})^2}{2g}, \qquad t_r = rac{2v_{0y}}{g}.$$

Remark: Since the initial speed $|\mathbf{v}_0|$ and the elevation angle θ determine v_{0y} and v_{0x} by the equations

$$v_{0y} = |\mathbf{v}_0| \sin(\theta), \qquad v_{0x} = |\mathbf{v}_0| \cos(\theta),$$

then holds

$$x_r = rac{|\mathbf{v}_0|^2 \sin(2 heta)}{g}, \quad y_h = rac{|\mathbf{v}_0|^2 \sin^2(heta)}{2g}, \quad t_r = rac{2|\mathbf{v}_0| \sin(heta)}{g}.$$

Range, Height, Flight Time

Theorem

The the range x_r , height y_h , and the fight time t_r of a projectile launched from the origin with initial velocity $\mathbf{v} = v_{0y}\mathbf{j} + v_{0x}\mathbf{i}$ are

$$x_r = \frac{2v_{0x}v_{0y}}{g}, \qquad y_h = \frac{(v_{0y})^2}{2g}, \qquad t_r = \frac{2v_{0y}}{g}.$$

Proof: Since $\mathbf{r}_0 = \mathbf{0}$, the expression for the projectile position function $\mathbf{r}(t) = y(t)\mathbf{j} + x(t)\mathbf{i}$ is

$$y(t) = -\frac{g}{2} t^2 + v_{0y} t, \qquad x(t) = v_{0x} t.$$

Using $t = x/v_{0x}$ we get the trajectory

$$y(x) = -\frac{g}{2v_{0x}^2}x^2 + \frac{v_{0y}}{v_{0x}}x$$

Range, Height, Flight Time

Theorem

The the range x_r , height y_h , and the fight time t_r of a projectile launched from the origin with initial velocity $\mathbf{v} = v_{0y}\mathbf{j} + v_{0x}\mathbf{i}$ are

$$x_r = rac{2v_{0x}v_{0y}}{g}, \qquad y_h = rac{(v_{0y})^2}{2g}, \qquad t_r = rac{2v_{0y}}{g}.$$

Proof: Recall: $y(x) = -\frac{g}{2v_{0x}^2}x^2 + \frac{v_{0y}}{v_{0x}}x$. The range is given by the condition $y(x_r) = 0$ and $x_r \neq 0$, that is,

$$-\frac{g}{2v_{0x}}x_r+v_{0y}=0 \quad \Rightarrow \quad x_r=\frac{2v_{0x}v_{0y}}{g}.$$

The maximum height occurs where y'(x) = 0, that is,

$$-\frac{g}{v_{0x}^2}x_h + \frac{v_{0y}}{v_{0x}} = 0 \quad \Rightarrow \quad x_h = \frac{v_{0x}v_{0y}}{g} \quad \Rightarrow \quad x_h = \frac{x_r}{2}$$

Range, Height, Flight Time

Theorem

The the range x_r , height y_h , and the fight time t_r of a projectile launched from the origin with initial velocity $\mathbf{v} = v_{0y}\mathbf{j} + v_{0x}\mathbf{i}$ are

$$x_r = rac{2v_{0x}v_{0y}}{g}, \qquad y_h = rac{(v_{0y})^2}{2g}, \qquad t_r = rac{2v_{0y}}{g}.$$

Proof: Recall: $y(x) = -\frac{g}{2v_{0x}^2}x^2 + \frac{v_{0y}}{v_{0x}}x$, and $x_h = \frac{v_{0x}v_{0y}}{g}$. Then, the maximum height $y_h = y(x_h)$ is

$$y_h = -\frac{g}{2v_{0x}^2} \frac{v_{0x}^2 v_{0y}^2}{g^2} + \frac{v_{0y}}{v_{0x}} \frac{v_{0x} v_{0y}}{g} = -\frac{v_{0y}^2}{2g} + \frac{v_{0y}^2}{g} \quad \Rightarrow \quad y_h = \frac{v_{0y}^2}{2g}$$

Recalling that $x(t) = v_{0x}t$, then the flight time t_r is

$$t_r = \frac{x_r}{v_{0x}} 2 \quad \Rightarrow \quad t_r = \frac{2v_{0y}}{g}.$$

Range, Height, Flight Time

Example

Find the range, height and flight time of the projectile with initial velocity $\bm{v}_0=3\bm{j}\,+\bm{i}.$

Solution: We could use the formulas from the Theorem. However, we compute them following the Theorem proof.

From $\mathbf{a} = -10 \mathbf{j}$ we get the projectile position function,

$$y(t) = -5t^2 + 3t, \qquad x(t) = t.$$

The trajectory is $y(x) = -5x^2 + 3x$. The range is

$$y(x_r) = 0 = -5x_r + 3 \quad \Rightarrow \quad x_r = \frac{3}{5}.$$

The height is $y_h = y\left(\frac{x_r}{2}\right)$, so, $y_h = -5\frac{3^2}{10^2} + 3\frac{3}{10}$, so $y_h = \frac{9}{20}$. The time flight is $t_r = \frac{x_r}{v_{0x}}$, that is, $t_r = \frac{3}{5}$.