Integration and projectile motion (Sect. 13.2)

- Integration of vector functions.
- Application: Projectile motion.
- Equations of a projectile motion.
- Range, Height, Flight Time.

Integration of vector functions

Definition

An antiderivative of a vector function \mathbf{v} is any vector valued function \mathbf{V} such that $\mathbf{V}^{\prime}=\mathbf{v}$.

Remark: Antiderivatives are also called indefinite integrals, or primitives, they are denoted as $\int \mathbf{v}(t) d t$, that is,

$$
\int \mathbf{v}(t) d t=\mathbf{V}(t)+\mathbf{C}
$$

where \mathbf{C} is a constant vector in Cartesian coordinates.

Example

Verify that $\mathbf{V}=\left\langle(-\cos (3 t) / 3+1),(\sin (t)-2),\left(e^{2 t} / 2+2\right)\right\rangle$ is an antiderivative of $\mathbf{v}=\left\langle\sin (3 t), \cos (t), e^{2 t}\right\rangle$.

Solution: $\mathbf{V}^{\prime}=\left\langle(-\cos (3 t) / 3+1)^{\prime},(\sin (t)-2)^{\prime},\left(e^{2 t} / 2+2\right)^{\prime}\right\rangle=\mathbf{v}$.

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.

Solution: The position function is a primitive of the velocity,

$$
\mathbf{r}(t)=\int \mathbf{v}(t) d t+\mathbf{C}=\left\langle t^{2}, \sin (t),-\cos (t)\right\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

with $\mathbf{C}=\left\langle c_{x}, c_{y}, c_{z}\right\rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$
\langle 1,1,1\rangle=\mathbf{r}(0)=\langle 0,0,-1\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

that is, $c_{x}=1, c_{y}=1, c_{z}=2$.
The position function is $\mathbf{r}(t)=\left\langle t^{2}+1, \sin (t)+1,-\cos (t)+2\right\rangle$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.

Solution: The velocity is the antiderivative of the acceleration:

$$
\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle
$$

where $\mathbf{v}_{0}=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$ is fixed by the initial condition.

$$
\mathbf{v}(0)=\langle 0,1,1\rangle=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle
$$

The velocity function is $\mathbf{v}(t)=\langle 0,1,(-10 t+1)\rangle$.
The position is $\mathbf{r}(t)=\left\langle r_{0 x},\left(t+r_{0 y}\right),\left(-5 t^{2}+t+r_{0 z}\right)\right\rangle$, and

$$
\mathbf{r}(0)=\langle 1,0,1\rangle=\left\langle r_{0 x}, r_{0 y}, r_{0 z}\right\rangle
$$

The obtain that $\mathbf{r}(t)=\left\langle 1, t,\left(-5 t^{2}+t+1\right)\right\rangle$.

Integrals of vector functions.

Definition

The definite integral of an integrable vector function $\mathbf{r}(t)=\langle\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)\rangle$ on the interval $[a, b]$ is given by

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right\rangle
$$

Example

Compute $\int_{0}^{\pi} \mathbf{r}(t) d t$ for the function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.
Solution: We compute an antiderivative and we evaluate the result,

$$
\mathbf{I}=\int_{0}^{\pi} \mathbf{r}(t) d t=\int_{0}^{\pi}\langle\cos (t), \sin (t), t\rangle d t .
$$

Integrals of vector functions.

Example

Compute $\int_{0}^{\pi} \mathbf{r}(t) d t$ for the function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.
Solution:

$$
\begin{gather*}
\mathbf{I}=\int_{0}^{\pi} \mathbf{r}(t) d t=\int_{0}^{\pi}\langle\cos (t), \sin (t), t\rangle d t \\
\mathbf{I}=\left\langle\int_{0}^{\pi} \cos (t) d t, \int_{0}^{\pi} \sin (t) d t, \int_{0}^{\pi} t d t\right\rangle \\
\mathbf{I}=\left\langle\left.\sin (t)\right|_{0} ^{\pi},-\left.\cos (t)\right|_{0} ^{\pi},\left.\frac{t^{2}}{2}\right|_{0} ^{\pi}\right\rangle \\
\mathbf{I}=\left\langle 0,2, \frac{\pi^{2}}{2}\right\rangle \Rightarrow \int_{0}^{\pi} \mathbf{r}(t) d t=\left\langle 0,2, \frac{\pi^{2}}{2}\right\rangle .
\end{gather*}
$$

Integration and projectile motion (Sect. 13.2)

- Integration of vector functions.
- Application: Projectile motion.
- Equations of a projectile motion.
- Range, Height, Flight Time.

Equations of a projectile motion

Remark: Projectile motion is the position of a point particle moving near the Earth surface subject to gravitational attraction.

Theorem

The motion of a particle with initial velocity \mathbf{v}_{0} and position \mathbf{r}_{0} subject to an acceleration $\mathbf{a}=-g \mathbf{k}$, where g is a constant, is

$$
\mathbf{r}(t)=-\frac{g}{2} t^{2} \mathbf{k}+\mathbf{v}_{0} t+\mathbf{r}_{0} .
$$

Remarks:
(a) The equation above in vector components is

$$
\mathbf{r}(t)=\left\langle\left(v_{0 x} t+r_{0 x}\right),\left(v_{0 y} t+r_{0 y}\right),\left(-\frac{g}{2} t^{2}+v_{0 z} t+r_{0 z}\right)\right\rangle
$$

where $\mathbf{v}_{0}=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$ and $\mathbf{r}_{0}=\left\langle r_{0 x}, r_{0 y}, r_{0 z}\right\rangle$.
(b) The motion occurs in a plane. We describe it with vectors in the plane \mathbb{R}^{2}. We use the coordinates x, y, only.

Equations of a projectile motion

Remark: Same Theorem, written in x, y coordinates in \mathbb{R}^{2}.

Theorem

The motion of a particle with initial velocity $\mathbf{v}_{0}=v_{0 x} \mathbf{i}+v_{0 y} \mathbf{j}$ and position $\mathbf{r}_{0}=r_{0 x} \mathbf{i}+r_{0 y} \mathbf{j}$ subject to the acceleration $\mathbf{a}=-g \mathbf{j}$, where g is a constant, is

$$
\mathbf{r}(t)=-\frac{g}{2} \mathbf{j}+\mathbf{v}_{0} t+\mathbf{r}_{0},
$$

equivalently, $\mathbf{r}(t)=\left(v_{0 x} t+r_{0 x}\right) \mathbf{i}+\left(-\frac{g}{2} t^{2}+v_{0 y} t+r_{0 y}\right) \mathbf{j}$.
Proof: Since $\mathbf{r}^{\prime \prime}(t)=-g \mathbf{j}$, then $\mathbf{r}^{\prime}(t)=c_{x} \mathbf{i}+\left(-g t+c_{y}\right) \mathbf{j}$.

$$
\mathbf{r}^{\prime}(0)=v_{0 x} \mathbf{i}+v_{0 y} \mathbf{j}=c_{x} \mathbf{i}+c_{y} \mathbf{j} \Rightarrow \mathbf{r}^{\prime}(t)=v_{0 x} \mathbf{i}+\left(-g t+v_{0 y}\right) \mathbf{j}
$$

One more integration, $\mathbf{r}(t)=\left(d_{x}+v_{0 x} t\right) \mathbf{i}+\left(d_{y}+v_{0 y} t-\frac{g}{2} t^{2}\right) \mathbf{j}$.
The initial condition $\mathbf{r}(0)=r_{0 x} \mathbf{i}+r_{0 y} \mathbf{j}=d_{x} \mathbf{i}+d_{y} \mathbf{j}$,
implies that $\mathbf{r}(t)=\left(v_{0 x} t+r_{0 x}\right) \mathbf{i}+\left(-\frac{g}{2} t^{2}+v_{0 y} t+r_{0 y}\right) \mathbf{j}$.

Equations of a projectile motion

Example

Find the position function and the trajectory of a projectile with initial speed $\left|v_{0}\right|=4 \mathrm{~m} / \mathrm{s}$, launched from the coordinate system origin with an elevation angle of $\theta=\pi / 3$.

Solution: The projectile acceleration is $\mathbf{a}=-g \mathbf{j}$, with $g=10 \mathrm{~m} / \mathrm{s}$. Therefore, $\mathbf{v}(t)=\left(-10 t+v_{0 y}\right) \mathbf{j}+v_{0 x} \mathbf{i}$, where

$$
v_{0 y}=\left|\mathbf{v}_{0}\right| \sin (\theta)=4 \frac{\sqrt{3}}{2}=2 \sqrt{3}, \quad v_{0 x}=\left|\mathbf{v}_{0}\right| \cos (\theta)=4 \frac{1}{2}=2 .
$$

Since $\mathbf{v}(t)=(-10 t+2 \sqrt{3}) \mathbf{j}+2 \mathbf{i}$ and $\mathbf{r}_{0}=\mathbf{0}$, then

$$
\mathbf{r}(t)=\left(-5 t^{2}+2 \sqrt{3} t\right) \mathbf{j}+2 t \mathbf{i}
$$

Since $y(t)=-5 t^{2}+2 \sqrt{3} t$ and $x(t)=2 t$, the trajectory is

$$
y(x)=-5\left(\frac{x^{2}}{4}\right)+2 \sqrt{3} \frac{x}{2} \Rightarrow y(x)=-\frac{5}{4} x^{2}+\sqrt{3} x
$$

Integration and projectile motion (Sect. 13.2)

- Integration of vector functions.
- Application: Projectile motion.
- Equations of a projectile motion.
- Range, Height, Flight Time.

Range, Height, Flight Time

Theorem
The the range x_{r}, height y_{h}, and the fight time t_{r} of a projectile launched from the origin with initial velocity $\mathbf{v}=v_{0 y} \mathbf{j}+v_{0 x} \mathbf{i}$ are

$$
x_{r}=\frac{2 v_{0 x} v_{0 y}}{g}, \quad y_{h}=\frac{\left(v_{0 y}\right)^{2}}{2 g}, \quad t_{r}=\frac{2 v_{0 y}}{g}
$$

Remark: Since the initial speed $\left|\mathbf{v}_{0}\right|$ and the elevation angle θ determine $v_{0 y}$ and $v_{0 x}$ by the equations

$$
v_{0 y}=\left|\mathbf{v}_{0}\right| \sin (\theta), \quad v_{0 x}=\left|\mathbf{v}_{0}\right| \cos (\theta)
$$

then holds

$$
x_{r}=\frac{\left|\mathbf{v}_{0}\right|^{2} \sin (2 \theta)}{g}, \quad y_{h}=\frac{\left|\mathbf{v}_{0}\right|^{2} \sin ^{2}(\theta)}{2 g}, \quad t_{r}=\frac{2\left|\mathbf{v}_{0}\right| \sin (\theta)}{g}
$$

Range, Height, Flight Time

Theorem

The the range x_{r}, height y_{h}, and the fight time t_{r} of a projectile launched from the origin with initial velocity $\mathbf{v}=v_{0 y} \mathbf{j}+v_{0 x} \mathbf{i}$ are

$$
x_{r}=\frac{2 v_{0 x} v_{0 y}}{g}, \quad y_{h}=\frac{\left(v_{0 y}\right)^{2}}{2 g}, \quad t_{r}=\frac{2 v_{0 y}}{g} .
$$

Proof: Since $\mathbf{r}_{0}=\mathbf{0}$, the expression for the projectile position function $\mathbf{r}(t)=y(t) \mathbf{j}+x(t) \mathbf{i}$ is

$$
y(t)=-\frac{g}{2} t^{2}+v_{0 y} t, \quad x(t)=v_{0 x} t
$$

Using $t=x / v_{0 x}$ we get the trajectory

$$
y(x)=-\frac{g}{2 v_{0 x}^{2}} x^{2}+\frac{v_{0 y}}{v_{0 x}} x
$$

Range, Height, Flight Time

Theorem

The the range x_{r}, height y_{h}, and the fight time t_{r} of a projectile launched from the origin with initial velocity $\mathbf{v}=v_{0 y} \mathbf{j}+v_{0 x} \mathbf{i}$ are

$$
x_{r}=\frac{2 v_{0 x} v_{0 y}}{g}, \quad y_{h}=\frac{\left(v_{0 y}\right)^{2}}{2 g}, \quad t_{r}=\frac{2 v_{0 y}}{g} .
$$

Proof: Recall: $y(x)=-\frac{g}{2 v_{0 x}^{2}} x^{2}+\frac{v_{0 y}}{v_{0 x}} x$. The range is given by the condition $y\left(x_{r}\right)=0$ and $x_{r} \neq 0$, that is,

$$
-\frac{g}{2 v_{0 x}} x_{r}+v_{0 y}=0 \Rightarrow x_{r}=\frac{2 v_{0 x} v_{0 y}}{g} .
$$

The maximum height occurs where $y^{\prime}(x)=0$, that is,

$$
-\frac{g}{v_{0 x}^{2}} x_{h}+\frac{v_{0 y}}{v_{0 x}}=0 \Rightarrow x_{h}=\frac{v_{0 x} v_{0 y}}{g} \quad \Rightarrow \quad x_{h}=\frac{x_{r}}{2} .
$$

Range, Height, Flight Time

Theorem

The the range x_{r}, height y_{h}, and the fight time t_{r} of a projectile launched from the origin with initial velocity $\mathbf{v}=v_{0 y} \mathbf{j}+v_{0 x} \mathbf{i}$ are

$$
x_{r}=\frac{2 v_{0 x} v_{0 y}}{g}, \quad y_{h}=\frac{\left(v_{0 y}\right)^{2}}{2 g}, \quad t_{r}=\frac{2 v_{0 y}}{g} .
$$

Proof: Recall: $y(x)=-\frac{g}{2 v_{0 x}^{2}} x^{2}+\frac{v_{0 y}}{v_{0 x}} x$, and $x_{h}=\frac{v_{0 x} v_{0 y}}{g}$.
Then, the maximum height $y_{h}=y\left(x_{h}\right)$ is
$y_{h}=-\frac{g}{2 v_{0 x}^{2}} \frac{v_{0 x}^{2} v_{0 y}^{2}}{g^{2}}+\frac{v_{0 y}}{v_{0 x}} \frac{v_{0 x} v_{0 y}}{g}=-\frac{v_{0 y}^{2}}{2 g}+\frac{v_{0 y}^{2}}{g} \quad \Rightarrow \quad y_{h}=\frac{v_{0 y}^{2}}{2 g}$.
Recalling that $x(t)=v_{0 x} t$, then the flight time t_{r} is

$$
t_{r}=\frac{x_{r}}{v_{0 x}} 2 \Rightarrow \quad t_{r}=\frac{2 v_{0 y}}{g} .
$$

Range, Height, Flight Time

Example

Find the range, height and flight time of the projectile with initial velocity $\mathbf{v}_{0}=3 \mathbf{j}+\mathbf{i}$.

Solution: We could use the formulas from the Theorem. However, we compute them following the Theorem proof.

From $\mathbf{a}=-10 \mathbf{j}$ we get the projectile position function,

$$
y(t)=-5 t^{2}+3 t, \quad x(t)=t
$$

The trajectory is $y(x)=-5 x^{2}+3 x$. The range is

$$
y\left(x_{r}\right)=0=-5 x_{r}+3 \quad \Rightarrow \quad x_{r}=\frac{3}{5} .
$$

The height is $y_{h}=y\left(\frac{x_{r}}{2}\right)$, so, $y_{h}=-5 \frac{3^{2}}{10^{2}}+3 \frac{3}{10}$, so $y_{h}=\frac{9}{20}$.
The time flight is $t_{r}=\frac{x_{r}}{v_{0 x}}$, that is, $t_{r}=\frac{3}{5}$.

