

functions.

Definition of vector functions: $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$

Example

Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$x^{2} + y^{2} = \cos^{2}(t) + \sin^{2}(t) = 1.$$

The z(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Definition of vector functions: $\boldsymbol{r}:\mathbb{R}\to\mathbb{R}^3$

Example

Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$x^{2} + z^{2} = \sin^{2}(t) + \cos^{2}(t) = 1.$$

The y(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases. \triangleleft

Limits and continuity of vector functions

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, has a *limit* given by the vector \mathbf{L} when t approaches t_0 , denoted as $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{L}$, iff: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$0 < |t - t_0| < \delta \quad \Rightarrow \quad |\mathbf{r}(t) - \mathbf{L}| < \epsilon.$$

Remark:

- The limit of r(t) = ⟨x(t), y(t), z(t)⟩ as t → t₀ is the limit of its components x(t), y(t), z(t) in Cartesian coordinates.
- That is: $\lim_{t \to t_0} \mathbf{r}(t) = \langle \lim_{t \to t_0} x(t), \lim_{t \to t_0} y(t), \lim_{t \to t_0} z(t) \rangle.$

$$\lim_{t\to t_0} \mathbf{r}(t) = \left\langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \right\rangle$$

Example

Given
$$\mathbf{r}(t) = \langle \cos(t), \sin(t)/t, t^2 + 2 \rangle$$
, compute $\lim_{t \to 0} \mathbf{r}(t)$.

Solution:

Notice that the vector function \mathbf{r} is not defined at t = 0, however its limit at t = 0 exists. Indeed,

$$\lim_{t \to 0} \mathbf{r}(t) = \lim_{t \to 0} \left\langle \cos(t), \frac{\sin(t)}{t}, t^2 + 2 \right\rangle$$
$$\lim_{t \to 0} \mathbf{r}(t) = \left\langle \lim_{t \to 0} \cos(t), \lim_{t \to 0} \frac{\sin(t)}{t}, \lim_{t \to 0} (t^2 + 2) \right\rangle$$
$$\lim_{t \to 0} \mathbf{r}(t) = \langle 1, 1, 2 \rangle.$$

We conclude that $\lim_{t\to 0} \mathbf{r}(t) = \langle 1, 1, 2 \rangle$.

 \triangleleft

Derivatives and motion

Definition

The vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is *differentiable at* $t = t_0$, denoted as $\mathbf{r}'(t)$ or $\frac{d\mathbf{r}}{dt}$, iff the following limit exists,

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}.$$

Remarks:

- A vector function **r** : *I* → ℝⁿ is *differentiable* if it is differentiable for each *t* ∈ *I*.
- If a vector function with values $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ in Cartesian components is differentiable, then

$$\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Derivatives and motion.

Theorem

If a vector function with values $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ in Cartesian components is differentiable, then

$$\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Proof:

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$
$$= \lim_{h \to 0} \left\langle \frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h}, \frac{z(t+h) - z(t)}{h} \right\rangle$$
$$= \left\langle \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}, \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}, \lim_{h \to 0} \frac{z(t+h) - z(t)}{h} \right\rangle$$
$$\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Derivatives and motion.

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle.$

Solution: We differentiate each component of \mathbf{r} , that is,

$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), (2t+3) \rangle.$$

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(2t), e^{3t}, 1/t \rangle$. Solution: We differentiate each component of \mathbf{r} , that is,

$$\mathbf{r}'(t) = \langle -2\sin(2t), 3e^{3t}, -1/t^2 \rangle.$$

Geometrical property of the derivative

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by the vector function \mathbf{r} at the end point of $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- The derivative of the position function is the velocity function, v(t) = r'(t). The speed is |v(t)|.
- The derivative of the velocity function is the acceleration function, a(t) = v'(t) = r''(t).

Derivatives and motion. Example Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$. Solution: The derivative of \mathbf{r} is computed z component by component, v(t) $\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$ r(0) t r(t) $\mathbf{r}(0) = \langle 1, 0, 0 \rangle$, $\mathbf{v}(0) = \langle 0, 1, 0 \rangle$. v(0) Х \triangleleft

Higher derivatives can also be computed.

Definition

The *m*-derivative of a vector function **r** is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)} = [\mathbf{r}^{(m-1)}]'$.

Example

Compute the third derivative of $\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle$.

Solution:

$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 2t + 2 \rangle,$$

$$\mathbf{r}^{(2)}(t) = [\mathbf{r}']'(t) = \langle -\cos(t), -\sin(t), 2 \rangle,$$

$$\mathbf{r}^{(3)}(t) = [\mathbf{r}^{(2)}]'(t) = \langle \sin(t), -\cos(t), 0 \rangle.$$

Recall: If $\mathbf{r}(t)$ is the position of a particle, then $\mathbf{v}(t) = \mathbf{r}'(t)$ is the velocity and $\mathbf{a}(t) = \mathbf{r}^{(2)}(t)$ is the acceleration of the particle.

Motion in a sphere

Remark: A particle with position function **r** moves on the surface of a sphere iff the vector function **r** has constant magnitude, that is, $|\mathbf{r}(t)| = r_0$ for every *t* in the function domain.

Theorem

If a differentiable vector function $\mathbf{r}: I \to \mathbb{R}^3$ has constant length, then for all $t \in I$ holds

$$\mathbf{r}(t)\,\cdot\,\mathbf{r}'(t)=0$$

Remark: A motion on a sphere satisfies that $\mathbf{r} \perp \mathbf{v}$.

Motion in a sphere

Theorem If a differentiable vector function $\mathbf{r}: I \rightarrow \mathbb{R}^3$ has constant length, then for all $t \in I$ holds

$$\mathbf{r}(t)\cdot\mathbf{r}'(t)=0.$$

Proof: Since $|\mathbf{r}(t)| = r_0$, constant for all $t \in I$,

$$\mathbf{r}\cdot\mathbf{r}=r_0^2.$$

Derivate on both sides above, use the derivative properties,

$$(\mathbf{r} \cdot \mathbf{r})' = (r_0^2)' = 0 \quad \Rightarrow \quad \mathbf{r}' \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r}' = 0.$$

Since the dot product is symmetric and $\mathbf{r}' = \mathbf{v}$, we obtain that

$$\mathbf{r} \cdot \mathbf{r}' = 0 \quad \Leftrightarrow \quad \mathbf{r} \cdot \mathbf{v} = 0.$$

Motion in a sphere

Example

Show that the position vector $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ of a particle moving in a circle is perpendicular to its velocity for $t \in \mathbb{R}$.

Solution:

We compute its velocity vector,

$$\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$$

Then we compute $\mathbf{r}(t) \cdot \mathbf{v}(t)$, that is,

 $\mathbf{r}(t) \cdot \mathbf{v}(t) = -\cos(t)\sin(t) + \sin(t)\cos(t) = 0.$