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Definition of vector functions: r : R → R3

Definition
A vector function is function r : I → Rn,
with n = 2, 3, and the function domain
is the interval I ⊂ R.
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Remarks:

(a) Motion in space motivates to define vector functions.

(b) Given Cartesian coordinates in R3, the values of a vector
function can be written in components as follows:

r(t) = 〈x(t), y(t), z(t)〉, t ∈ I ,

where x(t), y(t), and z(t) are the values of three scalar
functions.



Definition of vector functions: r : R → R3

Remarks:

I There is a natural association between a curve in Rn and the
vector function values r(t).
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I The curve is determined by the terminal points of the vector
function values r(t).

I The independent variable t is called the parameter of the
curve.

Definition of vector functions: r : R → R3

Example

Graph the vector function r(t) = 〈cos(t), sin(t), t〉.

Solution:

The curve given by r(t) lies on a
vertical cylinder with radius one, since

x2 + y2 = cos2(t) + sin2(t) = 1.

The z(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves up on the cylinder surface
when t increases. C
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Definition of vector functions: r : R → R3

Example

Graph the vector function r(t) = 〈sin(t), t, cos(t)〉.

Solution:

The curve given by r(t) lies on a
horizontal cylinder with radius one,
since

x2 + z2 = sin2(t) + cos2(t) = 1.

The y(t) coordinate of the curve
increases with t, so the terminal
point r(t) moves to the right on the
cylinder surface when t increases. C
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Limits and continuity of vector functions

Definition
The vector function r : I → Rn, with n = 2, 3, has a limit given by
the vector L when t approaches t0, denoted as lim

t→t0
r(t) = L, iff:

For every number ε > 0 there exists a number δ > 0 such that

0 < |t − t0| < δ ⇒ |r(t)− L| < ε.

Remark:

I The limit of r(t) = 〈x(t), y(t), z(t)〉 as t → t0 is the limit of
its components x(t), y(t), z(t) in Cartesian coordinates.

I That is: lim
t→t0

r(t) =
〈

lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)
〉
.

lim
t→t0

r(t) =
〈
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)
〉

Example

Given r(t) = 〈cos(t), sin(t)/t, t2 + 2〉, compute lim
t→0

r(t).

Solution:
Notice that the vector function r is not defined at t = 0, however
its limit at t = 0 exists. Indeed,

lim
t→0

r(t) = lim
t→0

〈
cos(t),

sin(t)

t
, t2 + 2

〉
lim
t→0

r(t) =
〈

lim
t→0

cos(t), lim
t→0

sin(t)

t
, lim
t→0

(t2 + 2)
〉

lim
t→0

r(t) = 〈1, 1, 2〉.

We conclude that lim
t→0

r(t) = 〈1, 1, 2〉. C



Limits and continuity of vector functions.

Definition
A vector function r : I → Rn, with n = 2, 3, is continuous at
t = t0 ∈ I iff holds lim

t→t0
r(t) = r(t0). The function r : I → Rn is

continuous if it is continuous at every t in its domain interval I .

Remark: A vector function with Cartesian components
r = 〈x , y , z〉 is continuous iff each component is continuous.

Example

The function r(t) = 〈sin(t), t, cos(t)〉 is continuous for t ∈ R. C

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.
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Derivatives and motion

Definition
The vector function r : I → Rn, with n = 2, 3, is differentiable at

t = t0, denoted as r′(t) or
dr

dt
, iff the following limit exists,

r′(t) = lim
h→0

r(t + h)− r(t)

h
.

Remarks:

I A vector function r : I → Rn is differentiable if it is
differentiable for each t ∈ I .

I If a vector function with values r(t) = 〈x(t), y(t), z(t)〉 in
Cartesian components is differentiable, then

r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Derivatives and motion.

Theorem
If a vector function with values r(t) = 〈x(t), y(t), z(t)〉 in
Cartesian components is differentiable, then

r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Proof:

r′(t) = lim
h→0

r(t + h)− r(t)

h

= lim
h→0

〈
x(t + h)− x(t)

h
,
y(t + h)− y(t)

h
,
z(t + h)− z(t)

h

〉

=

〈
lim
h→0

x(t + h)− x(t)

h
, lim
h→0

y(t + h)− y(t)

h
, lim
h→0

z(t + h)− z(t)

h

〉
r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.



Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = 〈cos(t), sin(t), (t2 + 3t − 1)〉.

Solution: We differentiate each component of r, that is,

r′(t) = 〈− sin(t), cos(t), (2t + 3)〉. C

Example

Find the derivative of the vector function r(t) = 〈cos(2t), e3t , 1/t〉.

Solution: We differentiate each component of r, that is,

r′(t) = 〈−2 sin(2t), 3e3t ,−1/t2〉. C

Geometrical property of the derivative

Remark: The vector r′(t) is
tangent to the curve given by
the vector function r at the
end point of r(t).
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Remark: If r(t) represents the vector position of a particle, then:

I The derivative of the position function is the velocity function,
v(t) = r′(t). The speed is |v(t)|.

I The derivative of the velocity function is the acceleration
function, a(t) = v′(t) = r′′(t).



Derivatives and motion.

Example

Compute the derivative of the position function
r(t) = 〈cos(t), sin(t), 0〉. Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).

Solution:

The derivative of r is computed
component by component,

v(t) = 〈− sin(t), cos(t), 0〉.

r(0) = 〈1, 0, 0〉, v(0) = 〈0, 1, 0〉.
C
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Differentiation rules are the similar as for scalar functions

Theorem
If v and w are differentiable vector functions, then holds:

I [v(t) + w(t)]′ = v′(t) + w′(t), (addition);

I [cv(t)]′ = cv′(t), (product rule);

I [v(f (t))]′ = v′(f (t))f ′(t), (chain rule);

I [f (t)v(t)]′ = f ′(t)v(t) + f (t)v′(t), (product rule);

I [v(t) ·w(t)]′ = v′(t) ·w(t) + v(t) ·w′(t), (dot product);

I [v(t)×w(t)]′ = v′(t)×w(t) + v(t)×w′(t), (cross product).

Higher derivatives can also be computed.

Definition
The m-derivative of a vector function r is denoted as r(m) and is
given by the expression r(m) = [r(m−1)]′.

Example

Compute the third derivative of r(t) = 〈cos(t), sin(t), t2 + 2t + 1〉.

Solution:
r′(t) = 〈− sin(t), cos(t), 2t + 2〉,

r(2)(t) =
[
r′
]′

(t) = 〈− cos(t),− sin(t), 2〉,

r(3)(t) =
[
r(2)

]′
(t) = 〈sin(t),− cos(t), 0〉. C

Recall: If r(t) is the position of a particle, then v(t) = r′(t) is the
velocity and a(t) = r(2)(t) is the acceleration of the particle.
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Motion in a sphere

Remark: A particle with position
function r moves on the surface of a
sphere iff the vector function r has
constant magnitude, that is, |r(t)| = r0
for every t in the function domain.
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Theorem
If a differentiable vector function
r : I → R3 has constant length, then for
all t ∈ I holds

r(t) · r′(t) = 0.

Remark: A motion on a sphere satisfies
that r ⊥ v.

v(t)

y

x

z

r(t)



Motion in a sphere

Theorem
If a differentiable vector function
r : I → R3 has constant length, then for
all t ∈ I holds

r(t) · r′(t) = 0.
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Proof: Since |r(t)| = r0, constant for all t ∈ I ,

r · r = r2
0 .

Derivate on both sides above, use the derivative properties,

(r · r)′ = (r2
0 )′ = 0 ⇒ r′ · r + r · r′ = 0.

Since the dot product is symmetric and r′ = v, we obtain that

r · r′ = 0 ⇔ r · v = 0.

Motion in a sphere

Example

Show that the position vector r(t) = 〈cos(t), sin(t), 0〉 of a particle
moving in a circle is perpendicular to its velocity for t ∈ R.

Solution:

We compute its velocity vector,

v(t) = 〈− sin(t), cos(t), 0〉.
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Then we compute r(t) · v(t), that is,

r(t) · v(t) = − cos(t) sin(t) + sin(t) cos(t) = 0. C


