Vector functions (Sect. 13.1)

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Motion on a sphere.

Definition of vector functions: $\boldsymbol{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Definition

A vector function is function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, and the function domain is the interval $I \subset \mathbb{R}$.

Remarks:
(a) Motion in space motivates to define vector functions.
(b) Given Cartesian coordinates in \mathbb{R}^{3}, the values of a vector function can be written in components as follows:

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad t \in I
$$

where $x(t), y(t)$, and $z(t)$ are the values of three scalar functions.

Definition of vector functions: $\boldsymbol{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Remarks:

- There is a natural association between a curve in \mathbb{R}^{n} and the vector function values $\mathbf{r}(t)$.

- The curve is determined by the terminal points of the vector function values $\mathbf{r}(t)$.
- The independent variable t is called the parameter of the curve.

Definition of vector functions: $\boldsymbol{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Example

Graph the vector function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$
x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1
$$

The $z(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Definition of vector functions: $\boldsymbol{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Example

Graph the vector function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$
x^{2}+z^{2}=\sin ^{2}(t)+\cos ^{2}(t)=1
$$

The $y(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the
 cylinder surface when t increases. \triangleleft

Vector functions (Sect. 13.1)

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Motion on a sphere.

Limits and continuity of vector functions

Definition

The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, has a limit given by the vector \mathbf{L} when t approaches t_{0}, denoted as $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L}$, iff: For every number $\epsilon>0$ there exists a number $\delta>0$ such that

$$
0<\left|t-t_{0}\right|<\delta \quad \Rightarrow \quad|\mathbf{r}(t)-\mathbf{L}|<\epsilon
$$

Remark:

- The limit of $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ as $t \rightarrow t_{0}$ is the limit of its components $x(t), y(t), z(t)$ in Cartesian coordinates.
- That is: $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$.
$\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$

Example

Given $\mathbf{r}(t)=\left\langle\cos (t), \sin (t) / t, t^{2}+2\right\rangle$, compute $\lim _{t \rightarrow 0} \mathbf{r}(t)$.

Solution:

Notice that the vector function \mathbf{r} is not defined at $t=0$, however its limit at $t=0$ exists. Indeed,

$$
\begin{gathered}
\lim _{t \rightarrow 0} \mathbf{r}(t)=\lim _{t \rightarrow 0}\left\langle\cos (t), \frac{\sin (t)}{t}, t^{2}+2\right\rangle \\
\lim _{t \rightarrow 0} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow 0} \cos (t), \lim _{t \rightarrow 0} \frac{\sin (t)}{t}, \lim _{t \rightarrow 0}\left(t^{2}+2\right)\right\rangle \\
\lim _{t \rightarrow 0} \mathbf{r}(t)=\langle 1,1,2\rangle
\end{gathered}
$$

We conclude that $\lim _{t \rightarrow 0} \mathbf{r}(t)=\langle 1,1,2\rangle$.

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2$, 3 , is continuous at $t=t_{0} \in I$ iff holds $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)$. The function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is continuous if it is continuous at every t in its domain interval l.

Remark: A vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is continuous iff each component is continuous.

Example

The function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$ is continuous for $t \in \mathbb{R} . \quad \triangleleft$

Remark: Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

Vector functions (Sect. 13.1)

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Motion on a sphere.

Derivatives and motion

Definition

The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is differentiable at $t=t_{0}$, denoted as $\mathbf{r}^{\prime}(t)$ or $\frac{d \mathbf{r}}{d t}$, iff the following limit exists,

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

Remarks:

- A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is differentiable if it is differentiable for each $t \in I$.
- If a vector function with values $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ in Cartesian components is differentiable, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Derivatives and motion.

Theorem
If a vector function with values $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ in Cartesian components is differentiable, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Proof:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} \\
=\lim _{h \rightarrow 0}\left\langle\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right\rangle \\
=\left\langle\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}, \lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}, \lim _{h \rightarrow 0} \frac{z(t+h)-z(t)}{h}\right\rangle \\
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
\end{gathered}
$$

Derivatives and motion.

Example

Find the derivative of the vector function
$\mathbf{r}(t)=\left\langle\cos (t), \sin (t),\left(t^{2}+3 t-1\right)\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t),(2 t+3)\rangle
$$

Example

Find the derivative of the vector function $\mathbf{r}(t)=\left\langle\cos (2 t), e^{3 t}, 1 / t\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\left\langle-2 \sin (2 t), 3 e^{3 t},-1 / t^{2}\right\rangle
$$

Geometrical property of the derivative

Remark: The vector $\mathbf{r}^{\prime}(t)$ is tangent to the curve given by the vector function \mathbf{r} at the end point of $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- The derivative of the position function is the velocity function, $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$. The speed is $|\mathbf{v}(t)|$.
- The derivative of the velocity function is the acceleration function, $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

Derivatives and motion.

Example

Compute the derivative of the position function $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Graph the curve given by \mathbf{r}, and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:

The derivative of \mathbf{r} is computed component by component,

$$
\begin{gathered}
\mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle \\
\mathbf{r}(0)=\langle 1,0,0\rangle, \mathbf{v}(0)=\langle 0,1,0\rangle
\end{gathered}
$$

Vector functions (Sect. 13.1)

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Motion on a sphere.

Differentiation rules are the similar as for scalar functions

Theorem

If \mathbf{v} and \mathbf{w} are differentiable vector functions, then holds:

- $[\mathbf{v}(t)+\mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t)+\mathbf{w}^{\prime}(t)$, (addition);
- $[c \mathbf{v}(t)]^{\prime}=c \mathbf{v}^{\prime}(t)$,
- $[\mathbf{v}(f(t))]^{\prime}=\mathbf{v}^{\prime}(f(t)) f^{\prime}(t)$,
- $[f(t) \mathbf{v}(t)]^{\prime}=f^{\prime}(t) \mathbf{v}(t)+f(t) \mathbf{v}^{\prime}(t)$,
(product rule);
(chain rule);
- $[\mathbf{v}(t) \cdot \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \cdot \mathbf{w}(t)+\mathbf{v}(t) \cdot \mathbf{w}^{\prime}(t), \quad(\operatorname{dot}$ product);
- $[\mathbf{v}(t) \times \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \times \mathbf{w}(t)+\mathbf{v}(t) \times \mathbf{w}^{\prime}(t), \quad$ (cross product).

Higher derivatives can also be computed.

Definition

The m-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}=\left[\mathbf{r}^{(m-1)}\right]^{\prime}$.

Example

Compute the third derivative of $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), t^{2}+2 t+1\right\rangle$.
Solution:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 2 t+2\rangle \\
\mathbf{r}^{(2)}(t)=\left[\mathbf{r}^{\prime}\right]^{\prime}(t)=\langle-\cos (t),-\sin (t), 2\rangle \\
\mathbf{r}^{(3)}(t)=\left[\mathbf{r}^{(2)}\right]^{\prime}(t)=\langle\sin (t),-\cos (t), 0\rangle
\end{gathered}
$$

Recall: If $\mathbf{r}(t)$ is the position of a particle, then $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity and $\mathbf{a}(t)=\mathbf{r}^{(2)}(t)$ is the acceleration of the particle.

Vector functions (Sect. 13.1)

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Motion on a sphere.

Motion in a sphere

Remark: A particle with position function \mathbf{r} moves on the surface of a sphere iff the vector function \mathbf{r} has constant magnitude, that is, $|\mathbf{r}(t)|=r_{0}$ for every t in the function domain.

Theorem
If a differentiable vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{3}$ has constant length, then for all $t \in I$ holds

$$
\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0
$$

Remark: A motion on a sphere satisfies
 that $\mathbf{r} \perp \mathbf{v}$.

Theorem
If a differentiable vector function
$\mathbf{r}: I \rightarrow \mathbb{R}^{3}$ has constant length, then for all $t \in I$ holds

$$
\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0
$$

Proof: Since $|\mathbf{r}(t)|=r_{0}$, constant for all $t \in I$,

$$
\mathbf{r} \cdot \mathbf{r}=r_{0}^{2}
$$

Derivate on both sides above, use the derivative properties,

$$
(\mathbf{r} \cdot \mathbf{r})^{\prime}=\left(r_{0}^{2}\right)^{\prime}=0 \quad \Rightarrow \quad \mathbf{r}^{\prime} \cdot \mathbf{r}+\mathbf{r} \cdot \mathbf{r}^{\prime}=0
$$

Since the dot product is symmetric and $\mathbf{r}^{\prime}=\mathbf{v}$, we obtain that

$$
\mathbf{r} \cdot \mathbf{r}^{\prime}=0 \quad \Leftrightarrow \quad \mathbf{r} \cdot \mathbf{v}=0
$$

Motion in a sphere

Example

Show that the position vector $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$ of a particle moving in a circle is perpendicular to its velocity for $t \in \mathbb{R}$.

Solution:

We compute its velocity vector,

$$
\mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle
$$

Then we compute $\mathbf{r}(t) \cdot \mathbf{v}(t)$, that is,

$$
\mathbf{r}(t) \cdot \mathbf{v}(t)=-\cos (t) \sin (t)+\sin (t) \cos (t)=0
$$

