

Definition

The *plane* by a point P_0 perpendicular to a non-zero vector **n**, called the *normal vector*, is the set of points P solution of the equation

A point an a vector determine a plane.

Example

Does the point P = (1, 2, 3) belong to the plane containing $P_0 = (3, 1, 2)$ and perpendicular to $\mathbf{n} = \langle 1, 1, 1 \rangle$?

 \triangleleft

Solution: We need to know if the vector $\overrightarrow{P_0P}$ is perpendicular to **n**. We first compute $\overrightarrow{P_0P}$,

$$\overrightarrow{P_0P} = \langle (1-3), (2-1), (3-2) \rangle \quad \Rightarrow \quad \overrightarrow{P_0P} = \langle -2, 1, 1 \rangle.$$

This vector is orthogonal to \mathbf{n} , since

$$\left(\overrightarrow{P_0P}\right)\cdot\mathbf{n}=-2+1+1=0.$$

We conclude that P belongs to the plane.

Equation of a plane in Cartesian coordinates Theorem Given any Cartesian coordinate system, the point P = (x, y, z)belongs to the plane by $P_0 = (x_0, y_0, z_0)$ perpendicular to $\mathbf{n} = \langle n_x, n_y, n_z \rangle$ iff holds $(x - x_0)n_x + (y - y_0)n_y + (z - z_0)n_z = 0.$ Furthermore, the equation above can be written as $n_x x + n_y y + n_z z = d, \qquad d = n_x x_0 + n_y y_0 + n_z z_0.$

Equation of a plane in Cartesian coordinates

Theorem

Given any Cartesian coordinate system, the point P = (x, y, z)belongs to the plane by $P_0 = (x_0, y_0, z_0)$ perpendicular to $\mathbf{n} = \langle n_x, n_y, n_z \rangle$ iff holds

$$(x-x_0)n_x+(y-y_0)n_y+(z-z_0)n_z=0.$$

Furthermore, the equation above can be written as

 $n_x x + n_y y + n_z z = d,$ $d = n_x x_0 + n_y y_0 + n_z z_0.$

Proof: In Cartesian coordinates

$$\overrightarrow{P_0P} = \langle (x-x_0), (y-y_0), (z-z_0) \rangle.$$

Therefore, the equation of the plane, $\overrightarrow{P_0P} \perp \mathbf{n}$, is

$$0 = \left(\overrightarrow{P_0P}\right) \cdot \mathbf{n} = (x - x_0)n_x + (y - y_0)n_y + (z - z_0)n_z.$$

Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing $P_0 = (1, 2, 3)$ and perpendicular to $\mathbf{n} = \langle 1, -1, 2 \rangle$.

Solution: The point P = (x, y, z) belongs to the plane above iff $(\overrightarrow{P_0P}) \cdot \mathbf{n} = 0$, that is,

 $\langle (x-1), (y-2), (z-3) \rangle \cdot \langle 1, -1, 2 \rangle = 0.$

Computing the dot product above we get

$$(x-1) - (y-2) + 2(z-3) = 0.$$

The equation of the plane can be also written as

$$x - y + 2z = 5.$$

Equation of a plane in Cartesian coordinates

Example

Find a point P_0 and the perpendicular vector **n** to the plane 2x + 4y - z = 3.

Solution: The equation of a plane is $n_x x + n_y y + n_z z = d$.

The components of the normal vector \mathbf{n} are the coefficients that multiply the variables x, y and z. Hence,

$$\mathbf{n} = \langle 2, 4, -1 \rangle.$$

A point P_0 on the plane is simple to find. Just look for the intersection of the plane with one of the coordinate axis.

For example: set y = 0, z = 0 and find x from the equation of the plane: 2x = 3, that is x = 3/2. Therefore, $P_0 = (3/2, 0, 0)$.

 \triangleleft

Equation of a plane in Cartesian coordinates Solution: Find two tangent vectors to the plane, for example, $\overrightarrow{PQ} = \langle -2, 2, 1 \rangle$ and $\overrightarrow{PR} = \langle -1, 0, 3 \rangle$. Find a vector **n** perpendicular to both \overrightarrow{PQ} and \overrightarrow{PR} . One way is using the cross product: $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$. That is, $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 2 & 1 \\ -1 & 0 & 3 \end{vmatrix} = (6-0)\mathbf{i} - (-6+1)\mathbf{j} + (0+2)\mathbf{k}$. The result is: $\mathbf{n} = \langle 6, 5, 2 \rangle$. Choose any point on the plane, say P = (2, 0, 0). Then, the equation of the plane is:

$$6(x-2) + 5y + 2z = 0.$$

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes 2x + y - 3z = 2 and -x + 2y - z = 1. Solution: We need to find a vector perpendicular to both normal vectors $\mathbf{n} = \langle 2, 1, -3 \rangle$ and **N** = $\langle -1, 2, -1 \rangle$. We choose $\mathbf{v} = \mathbf{N} \times \mathbf{n}$. That is, $\mathbf{v} = \mathbf{N} \times \mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -1 \\ 2 & 1 & -3 \end{vmatrix} = (-6+1)\mathbf{i} - (3+2)\mathbf{j} + (-1-4)\mathbf{k}$ Result: $\mathbf{v} = \langle -5, -5, -5 \rangle$. A simpler choice is $\mathbf{v} = \langle 1, 1, 1 \rangle$. \triangleleft

Parallel planes and angle between planes

Example

Find the angle between the planes 2x + y - 3z = 2 and -x + 2y - z = 1.

Solution: We need to find the angle between the normal vectors $\mathbf{n} = \langle 2, 1, -3 \rangle$ and $\mathbf{N} = \langle -1, 2, -1 \rangle$.

We use the dot product: $\cos(\theta) = \frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$

The numbers we need are:

$$\mathbf{n} \cdot \mathbf{N} = -2 + 2 + 3 = 3,$$

 $|\mathbf{n}| = \sqrt{4+1+9} = \sqrt{14}, \qquad |\mathbf{N}| = \sqrt{1+4+1} = \sqrt{6}$

Therefore, $\cos(\theta) = 3/\sqrt{84}$. We conclude that

$$\theta = 70^{\circ} 53' 36''.$$

 \triangleleft

Distance formula from a point to a plane

Theorem

The distance d from a point P to a plane containing P_0 with normal vector **n** is the shortest distance from P to any point in the plane, and is given by the expression

Distance formula from a point to a plane Proof: It is simple to obtain the distance formula $d = \frac{|(\overrightarrow{P_0P}) \cdot \mathbf{n}|}{|\mathbf{n}|}.$ $\int_{\mathbf{n}} \underbrace{\int_{\mathbf{n}} \underbrace{\int_{\mathbf{n}}$

Distance formula from a point to a plane

Example

Find the distance from the point P = (1, 2, 3) to the plane x - 3y + 2z = 4.

Solution: We need to find a point P_0 on the plane and its normal vector **n**. Then, use the formula $d = |(\overrightarrow{P_0P}) \cdot \mathbf{n}|/|\mathbf{n}|$.

To find a point on the plane: for example, if y = 0, z = 0, then x = 4. That is, $P_0 = (4, 0, 0)$.

The normal vector is in the plane equation: $\mathbf{n} = \langle 1, -3, 2 \rangle$.

We now compute $\overrightarrow{P_0P}=\langle -3,2,3
angle.$ Then,

$$d=rac{|-3-6+6|}{\sqrt{1+9+4}} \quad \Rightarrow \quad d=rac{3}{\sqrt{14}}.$$