## Lines and planes in space (Sect. 12.5)

## Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

A point an a vector determine a plane.

## Definition

The plane by a point $P_{0}$ perpendicular to a non-zero vector $\mathbf{n}$, called the normal vector, is the set of points $P$ solution of the equation

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0
$$



A point an a vector determine a plane.

## Example

Does the point $P=(1,2,3)$ belong to the plane containing $P_{0}=(3,1,2)$ and perpendicular to $\mathbf{n}=\langle 1,1,1\rangle$ ?


Solution: We need to know if the vector $\overrightarrow{P_{0} P}$ is perpendicular to $\mathbf{n}$. We first compute $\overrightarrow{P_{0} P}$,

$$
\overrightarrow{P_{0} P}=\langle(1-3),(2-1),(3-2)\rangle \quad \Rightarrow \quad \overrightarrow{P_{0} P}=\langle-2,1,1\rangle .
$$

This vector is orthogonal to $\mathbf{n}$, since

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=-2+1+1=0
$$

We conclude that $P$ belongs to the plane.

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.


## Equation of a plane in Cartesian coordinates

## Theorem

Given any Cartesian coordinate system, the point $P=(x, y, z)$ belongs to the plane by $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to $\mathbf{n}=\left\langle n_{x}, n_{y}, n_{z}\right\rangle$ iff holds

$$
\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}=0 .
$$

Furthermore, the equation above can be written as

$$
n_{x} x+n_{y} y+n_{z} z=d, \quad d=n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}
$$



## Equation of a plane in Cartesian coordinates

Theorem
Given any Cartesian coordinate system, the point $P=(x, y, z)$ belongs to the plane by $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to $\mathbf{n}=\left\langle n_{x}, n_{y}, n_{z}\right\rangle$ iff holds

$$
\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}=0 .
$$

Furthermore, the equation above can be written as

$$
n_{x} x+n_{y} y+n_{z} z=d, \quad d=n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}
$$

Proof: In Cartesian coordinates

$$
\overrightarrow{P_{0} P}=\left\langle\left(x-x_{0}\right),\left(y-y_{0}\right),\left(z-z_{0}\right)\right\rangle
$$

Therefore, the equation of the plane, $\overrightarrow{P_{0} P} \perp \mathbf{n}$, is

$$
0=\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}
$$

## Equation of a plane in Cartesian coordinates

## Example

Find the equation of a plane containing $P_{0}=(1,2,3)$ and perpendicular to $\mathbf{n}=\langle 1,-1,2\rangle$.

Solution: The point $P=(x, y, z)$ belongs to the plane above iff $\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0$, that is,

$$
\langle(x-1),(y-2),(z-3)\rangle \cdot\langle 1,-1,2\rangle=0
$$

Computing the dot product above we get

$$
(x-1)-(y-2)+2(z-3)=0
$$

The equation of the plane can be also written as

$$
x-y+2 z=5
$$

## Equation of a plane in Cartesian coordinates

## Example

Find a point $P_{0}$ and the perpendicular vector $\mathbf{n}$ to the plane $2 x+4 y-z=3$.

Solution: The equation of a plane is $n_{x} x+n_{y} y+n_{z} z=d$.
The components of the normal vector $\mathbf{n}$ are the coefficients that multiply the variables $x, y$ and $z$. Hence,

$$
\mathbf{n}=\langle 2,4,-1\rangle .
$$

A point $P_{0}$ on the plane is simple to find. Just look for the intersection of the plane with one of the coordinate axis.

For example: set $y=0, z=0$ and find $x$ from the equation of the plane: $2 x=3$, that is $x=3 / 2$. Therefore, $P_{0}=(3 / 2,0,0)$.

## Equation of a plane in Cartesian coordinates

## Example

Find the equation of the plane containing the points $P=(2,0,0)$, $Q=(0,2,1), R=(1,0,3)$.


## Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.


## Equation of a plane in Cartesian coordinates

## Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.


Find a vector $\mathbf{n}$ perpendicular to both $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
One way is using the cross product: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$. That is,

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 1 \\
-1 & 0 & 3
\end{array}\right|=(6-0) \mathbf{i}-(-6+1) \mathbf{j}+(0+2) \mathbf{k}
$$

The result is: $\mathbf{n}=\langle 6,5,2\rangle$. Choose any point on the plane, say $P=(2,0,0)$. Then, the equation of the plane is:

$$
6(x-2)+5 y+2 z=0
$$

## Lines and planes in space (Sect. 12.5)

## Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

The line of intersection of two planes.

## Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.


Solution:
We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.


We choose $\mathbf{v}=\mathbf{N} \times \mathbf{n}$. That is,

$$
\mathbf{v}=\mathbf{N} \times \mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & -1 \\
2 & 1 & -3
\end{array}\right|=(-6+1) \mathbf{i}-(3+2) \mathbf{j}+(-1-4) \mathbf{k}
$$

Result: $\mathbf{v}=\langle-5,-5,-5\rangle$. A simpler choice is $\mathbf{v}=\langle 1,1,1\rangle . \quad \triangleleft$

## Lines and planes in space (Sect. 12.5)

## Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.


## Parallel planes and angle between planes

## Definition

Two planes are parallel if their normal vectors are parallel. The angle between two non-parallel planes is the smaller angle between their normal vectors.


## Parallel planes and angle between planes

## Example

Find the angle between the planes $2 x+y-3 z=2$ and
$-x+2 y-z=1$.
Solution: We need to find the angle between the normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.
We use the dot product: $\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}$.
The numbers we need are:

$$
\begin{gathered}
\mathbf{n} \cdot \mathbf{N}=-2+2+3=3 \\
|\mathbf{n}|=\sqrt{4+1+9}=\sqrt{14}, \quad|\mathbf{N}|=\sqrt{1+4+1}=\sqrt{6}
\end{gathered}
$$

Therefore, $\cos (\theta)=3 / \sqrt{84}$. We conclude that

$$
\theta=70^{\circ} 53^{\prime} 36^{\prime \prime}
$$

## Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.


## Distance formula from a point to a plane

Theorem
The distance $d$ from a point $P$ to a plane containing $P_{0}$ with normal vector $\mathbf{n}$ is the shortest distance from $P$ to any point in the plane, and is given by the expression

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$



## Distance formula from a point to a plane

Proof: It is simple to obtain the distance formula

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$



From the picture above, and denoting $\theta$ is the angle between $\overrightarrow{P_{0} P}$ and $\mathbf{n}$, we see that

$$
d=\left|\left|\overrightarrow{P_{0} P}\right| \cos (\theta)\right|=\left|\frac{\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}}{|\mathbf{n}|}\right|
$$

## Distance formula from a point to a plane

## Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.

Solution: We need to find a point $P_{0}$ on the plane and its normal vector $\mathbf{n}$. Then, use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.

To find a point on the plane: for example, if $y=0, z=0$, then $x=4$. That is, $P_{0}=(4,0,0)$.

The normal vector is in the plane equation: $\mathbf{n}=\langle 1,-3,2\rangle$.
We now compute $\overrightarrow{P_{0} P}=\langle-3,2,3\rangle$. Then,

$$
d=\frac{|-3-6+6|}{\sqrt{1+9+4}} \Rightarrow d=\frac{3}{\sqrt{14}}
$$

