

Geometric definition of cross product

Definition

The cross product of vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^3 having magnitudes $|\mathbf{v}|$, $|\mathbf{w}|$ and angle in between θ , where $0 \le \theta \le \pi$, is denoted by $\mathbf{v} \times \mathbf{w}$ and is the vector perpendicular to both \mathbf{v} and \mathbf{w} , pointing in the direction given by the right-hand rule, with norm

$$|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}| |\mathbf{w}| \sin(\theta).$$

Remark: Cross product of two vectors is another vector; which is perpendicular to the original vectors.

Properties of the cross product Theorem (a) $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, (skew-symmetric); (b) $\mathbf{v} \times \mathbf{v} = \mathbf{0}$; (c) $(a\mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (a\mathbf{w}) = a(\mathbf{v} \times \mathbf{w})$, (linear); (d) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$, (linear); (e) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$, (not associative). Proof. Part (a) results from the right-hand rule and (b) from part (a). Parts (b) and (c) are proven in a similar ways as the linear property of the dot product. Part (d) is proven by giving an example.

Properties of the cross product

Example

Show that the cross product is *not associative*, that is, $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}.$

Solution: We prove this statement giving an example. We now show that $\mathbf{i} \times (\mathbf{i} \times \mathbf{k}) \neq (\mathbf{i} \times \mathbf{i}) \times \mathbf{k} = \mathbf{0}$. Indeed,

$$\mathbf{i}\times(\mathbf{i}\times\mathbf{k})=\mathbf{i}\times(-\mathbf{j}\,)=-(\mathbf{i}\times\mathbf{j}\,)=-\mathbf{k}\quad\Rightarrow\quad\mathbf{i}\times(\mathbf{i}\times\mathbf{k})=-\mathbf{k},$$

$$(\mathbf{i} \times \mathbf{i}) \times \mathbf{k} = \mathbf{0} \times \mathbf{j} = \mathbf{0} \quad \Rightarrow \quad (\mathbf{i} \times \mathbf{i}) \times \mathbf{k} = \mathbf{0}.$$

We conclude that $\mathbf{i} \times (\mathbf{i} \times \mathbf{k}) \neq (\mathbf{i} \times \mathbf{i}) \times \mathbf{k} = \mathbf{0}$.

 \triangleleft

Recall: The cross product of parallel vectors vanishes.

Cross product in vector components

Theorem

The cross product of vectors $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ is given by

 $\mathbf{v} \times \mathbf{w} = \langle (v_2 w_3 - v_3 w_2), (v_3 w_1 - v_1 w_3), (v_1 w_2 - v_2 w_1) \rangle.$

Proof: Use the cross product properties and recall the non-zero cross products $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, and $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$. Express $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ and $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$, then

$$\mathbf{v} \times \mathbf{w} = (v_1 \,\mathbf{i} + v_2 \,\mathbf{j} + v_3 \,\mathbf{k}) \times (w_1 \,\mathbf{i} + w_2 \,\mathbf{j} + w_3 \,\mathbf{k}).$$

Use the linearity property. The only non-zero terms involve $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, and $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$ and the symmetric analogues. The result is

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2) \mathbf{i} + (v_3 w_1 - v_1 w_3) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k}.$$

Cross product in vector components. Example Find $\mathbf{v} \times \mathbf{w}$ for $\mathbf{v} = \langle 1, 2, 0 \rangle$ and $\mathbf{w} = \langle 3, 2, 1 \rangle$, Solution: We use the formula $\mathbf{v} \times \mathbf{w} = \langle (v_2w_3 - v_3w_2), (v_3w_1 - v_1w_3), (v_1w_2 - v_2w_1) \rangle$ $\mathbf{v} \times \mathbf{w} = \langle [(2)(1) - (0)(2)], [(0)(3) - (1)(1)], [(1)(2) - (2)(3)] \rangle$ $\mathbf{v} \times \mathbf{w} = \langle (2 - 0), (-1), (2 - 6) \rangle \Rightarrow \mathbf{v} \times \mathbf{w} = \langle 2, -1, -4 \rangle$. Exercise: Find the angle between \mathbf{v} and \mathbf{w} above, using both the cross and the dot products. Verify that you get the same answer.

 \triangleleft

Determinants to compute cross products. Remark: Determinants help remember the $\mathbf{v} \times \mathbf{w}$ components. Recall: (a) The determinant of a 2 × 2 matrix is given by $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$ (b) The determinant of a 3 × 3 matrix is given by $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$ 2 × 2 determinants are used to find 3 × 3 determinants.

Determinants to compute cross products.

Theorem

The formula to compute determinants of 3×3 matrices can be used to find the the cross product $\mathbf{v} \times \mathbf{w}$, where $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, as follows

 $\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$

Proof: Indeed, a straightforward computation shows that

 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = (v_2 w_3 - v_3 w_2) \mathbf{i} - (v_1 w_3 - v_3 w_1) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k}.$

Determinants to compute cross products.

Example

Given the vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -2, 3, 1 \rangle$, compute both $\mathbf{w} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{w}$.

Solution: We need to compute the following determinant:

	i	j	k		i	j	k
$\mathbf{w} \times \mathbf{v} =$	w_1	<i>W</i> ₂	W3	=	-2	3	1
	v_1	<i>v</i> ₂	V3		1	2	3

The result is

$$\mathbf{w} \times \mathbf{v} = (9-2)\mathbf{i} - (-6-1)\mathbf{j} + (-4-3)\mathbf{k} \quad \Rightarrow \quad \mathbf{w} \times \mathbf{v} = \langle 7, 7, -7 \rangle$$

 \triangleleft

The properties of the determinant imply $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$. Hence, $\mathbf{v} \times \mathbf{w} = \langle -7, -7, 7 \rangle$.

Triple product and volumes

Theorem The number $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped determined by the vectors \mathbf{u} , \mathbf{v} , \mathbf{w} .

Proof: Recall the dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos(\theta)$. Then,

$$|\mathbf{u} \cdot (\mathbf{v} imes \mathbf{w})| = |\mathbf{u}| \, |\mathbf{v} imes \mathbf{w}| \, |\cos(heta)| = h \, |\mathbf{v} imes \mathbf{w}|.$$

 $|\mathbf{v} \times \mathbf{w}|$ is the area A of the parallelogram formed by \mathbf{v} and \mathbf{w} . So,

$$|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})|=hA,$$

which is the volume of the parallelepiped formed by **u**, **v**, **w**.

The triple product and volumes

Example

Compute the volume of the parallelepiped formed by the vectors $\mathbf{u} = \langle 1, 2, 3 \rangle$, $\mathbf{v} = \langle 3, 2, 1 \rangle$, $\mathbf{w} = \langle 1, -2, 1 \rangle$.

Solution: We use the formula $V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$. We must compute the cross product first:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 1 \\ 1 & -2 & 1 \end{vmatrix} = (2+2)\mathbf{i} - (3-1)\mathbf{j} + (-6-2)\mathbf{k},$$

that is, $\mathbf{v} \times \mathbf{w} = \langle 4, -2, -8 \rangle$. Now compute the dot product,

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 1, 2, 3 \rangle \cdot \langle 4, -2, -8 \rangle = 4 - 4 - 24,$$

 \triangleleft

that is, $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = -24$. We conclude that V = 24.

The triple product and volumes

Remark: The triple product can be computed with a determinant.

Theorem If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, then

	u_1	u ₂	U ₃	
$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) =$	v_1	<i>v</i> ₂	V3	
	w_1	<i>W</i> ₂	W3	

Example

Compute the volume of the parallelepiped formed by the vectors $\mathbf{u} = \langle 1, 2, 3 \rangle$, $\mathbf{v} = \langle 3, 2, 1 \rangle$, $\mathbf{w} = \langle 1, -2, 1 \rangle$.

Solution:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & -2 & 1 \end{vmatrix} = (1)(2+2) - (2)(3-1) + (3)(-6-2),$$

that is, $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 4 - 4 - 24 = -24$. Hence V = 24.