Vectors on a plane and in space (12.2)

- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.
- Vector components in Cartesian coordinates.
- Magnitude of a vector and unit vectors.
- Addition and scalar multiplication.

Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.

Definition

A vector in \mathbb{R}^{n}, with $n=2,3$, is an ordered pair of points in \mathbb{R}^{n}, denoted as $\overrightarrow{P_{1} P_{2}}$, where $P_{1}, P_{2} \in \mathbb{R}^{n}$. The point P_{1} is called the initial point and P_{2} is
 called the terminal point.

Remarks:

- A vector in \mathbb{R}^{2} or \mathbb{R}^{3} is an oriented line segment.
- A vector is drawn by an arrow pointing to the terminal point.
- A vector is denoted not only by $\overrightarrow{P_{1} P_{2}}$ but also by an arrow over a letter, like \vec{v}, or by a boldface letter, like \mathbf{v}.

Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.

Remark: The order of the points determines the direction. For example, the vectors $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{2} P_{1}}$ have opposite directions.

Remark: By 1850 it was realized that different physical phenomena were described using a new concept at that time, called a vector. A vector was more than a number in the sense that it was needed more than a single number to specify it. Phenomena described using vectors included velocities, accelerations, forces, rotations, electric phenomena, magnetic phenomena, and heat transfer.

Vectors on a plane and in space (12.2)

- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.
- Vector components in Cartesian coordinates.
- Magnitude of a vector and unit vectors.
- Addition and scalar multiplication.

Components of a vector in Cartesian coordinates

Theorem
Given the points $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, the vector $\overrightarrow{P_{1} P_{2}}$ determines a unique ordered pair, called vector components,

$$
\left\langle\overrightarrow{P_{1} P_{2}}\right\rangle=\left\langle\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right)\right\rangle
$$

Proof:
Draw the vector $\overrightarrow{P_{1} P_{2}}$ in Cartesian coordinates.

Remark: A similar result holds for vectors in space.

Components of a vector in Cartesian coordinates

Theorem
Given the points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right), P_{2}=\left(x_{2}, y_{2}, z_{2}\right) \in \mathbb{R}^{3}$, the vector $\overrightarrow{P_{1} P_{2}}$ fixes a unique ordered triple, called vector components,

$$
\left\langle\overrightarrow{P_{1} P_{2}}\right\rangle=\left\langle\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)\right\rangle
$$

Proof:
Draw the vector
$\overrightarrow{P_{1} P_{2}}$ in Cartesian coordinates.

Components of a vector in Cartesian coordinates

Example

Find the components of a vector with initial point $P_{1}=(1,-2,3)$ and terminal point $P_{2}=(3,1,2)$.
Solution:

$$
\left\langle\overrightarrow{P_{1} P_{2}}\right\rangle=\langle(3-1),(1-(-2)),(2-3)\rangle \quad \Rightarrow \quad\left\langle\overrightarrow{P_{1} P_{2}}\right\rangle=\langle 2,3,-1\rangle
$$

Example

Find the components of a vector with initial point $P_{3}=(3,1,4)$ and terminal point $P_{4}=(5,4,3)$.
Solution:

$$
\left\langle\overrightarrow{P_{3} P_{4}}\right\rangle=\langle(5-3),(4-1),(3-4)\rangle \quad \Rightarrow \quad\left\langle\overrightarrow{P_{3} P_{4}}\right\rangle=\langle 2,3,-1\rangle .
$$

Remark: $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{3} P_{4}}$ have the same components although they are different vectors.

Components of a vector in Cartesian coordinates

Remark:

The vector components determine a vector up to translations.

Notice that $\mathbf{u} \neq \mathbf{v} \neq \overrightarrow{0 P}$, since they have different initial and terminal points. However,
$\langle\mathbf{u}\rangle=\langle\mathbf{v}\rangle=\langle\overrightarrow{0 P}\rangle=\left\langle v_{x}, v_{y}\right\rangle$.

Definition

The standard position vector of a vector with components $\left\langle v_{x}, v_{y}\right\rangle$ is the vector $\overrightarrow{0 P}$, where the point $0=(0,0)$ is the origin of the Cartesian coordinates and the point $P=\left(v_{x}, v_{y}\right)$.

Notation: We identify vectors with their components: $\mathbf{v}=\langle\mathbf{v}\rangle$.

Components of a vector in Cartesian coordinates

Remark: Vectors are used to describe motion of particles.

The position $\mathbf{r}(t)$, velocity $\mathbf{v}(t)$, and acceleration $\mathbf{a}(t)$ at the time t of a moving particle are described by vectors in space.

Vectors on a plane and in space (12.2)

- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.
- Vector components in Cartesian coordinates.
- Magnitude of a vector and unit vectors.
- Addition and scalar multiplication.

Magnitude of a vector and unit vectors.

Definition

The magnitude or length of a vector $\overrightarrow{P_{1} P_{2}}$ is the distance from the initial point to the terminal point.

- If the vector $\overrightarrow{P_{1} P_{2}}$ has components

$$
\overrightarrow{P_{1} P_{2}}=\left\langle\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)\right\rangle,
$$

then its magnitude, denoted as $\left|\overrightarrow{P_{1} P_{2}}\right|$, is given by

$$
\left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

- If the vector \mathbf{v} has components $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$, then its magnitude, denoted as $|\mathbf{v}|$, is given by

$$
|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} .
$$

Magnitude of a vector and unit vectors.

Example

Find the length of a vector with initial point $P_{1}=(1,2,3)$ and terminal point $P_{2}=(4,3,2)$.

Solution: First find the component of the vector $\overrightarrow{P_{1} P_{2}}$, that is,

$$
\overrightarrow{P_{1} P_{2}}=\langle(4-1),(3-2),(2-3)\rangle \quad \Rightarrow \quad \overrightarrow{P_{1} P_{2}}=\langle 3,1,-1\rangle .
$$

Therefore, its length is

$$
\left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{3^{2}+1^{2}+(-1)^{2}} \Rightarrow\left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{11}
$$

Example

If the vector \mathbf{v} represents the velocity of a moving particle, then its length $|\mathbf{v}|$ represents the speed of the particle.

Magnitude of a vector and unit vectors.

Definition

A vector \mathbf{v} is a unit vector iff \mathbf{v} has length one, that is, $|\mathbf{v}|=1$.

Example

Show that $\mathbf{v}=\left\langle\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right\rangle$ is a unit vector.
Solution:

$$
|\mathbf{v}|=\sqrt{\frac{1}{14}+\frac{4}{14}+\frac{9}{14}}=\sqrt{\frac{14}{14}} \Rightarrow|\mathbf{v}|=1
$$

Example

The unit vectors $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$ are useful to express any other vector in \mathbb{R}^{3}.

Vectors on a plane and in space (12.2)

- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.
- Vector components in Cartesian coordinates.
- Magnitude of a vector and unit vectors.
- Addition and scalar multiplication.

Addition and scalar multiplication.

Definition

Given the vectors $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$ in \mathbb{R}^{3}, and a number $a \in \mathbb{R}$, then the vector addition, $\mathbf{v}+\mathbf{w}$, and the scalar multiplication, $a \mathbf{v}$, are given by

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left\langle\left(v_{x}+w_{x}\right),\left(v_{y}+w_{y}\right),\left(v_{z}+w_{z}\right)\right\rangle, \\
a \mathbf{v} & =\left\langle a v_{x}, a v_{y}, a v_{z}\right\rangle .
\end{aligned}
$$

Remarks:

- The vector $-\mathbf{v}=(-1) \mathbf{v}$ is called the opposite of vector \mathbf{v}.
- The difference of two vectors is the addition of one vector and the opposite of the other vector, that is, $\mathbf{v}-\mathbf{w}=\mathbf{v}+(-1) \mathbf{w}$. This equation in components is

$$
\mathbf{v}-\mathbf{w}=\left\langle\left(v_{x}-w_{x}\right),\left(v_{y}-w_{y}\right),\left(v_{z}-w_{z}\right)\right\rangle .
$$

Addition and scalar multiplication.

Remark: The addition of two vectors is equivalent to the parallelogram law: The vector $\mathbf{v}+\mathbf{w}$ is the diagonal of the parallelogram formed by vectors \mathbf{v} and \mathbf{w} when they are in their standard position.

Addition and scalar multiplication.

W

Remark: The scalar multiplication stretches a vector if $a>1$ and compresses the vector if $0<a<1$.

Addition and scalar multiplication.

Example

Given the vectors $\mathbf{v}=\langle 2,3\rangle$ and $\mathbf{w}=\langle-1,2\rangle$, find the magnitude of the vectors $\mathbf{v}+\mathbf{w}$ and $\mathbf{v}-\mathbf{w}$.

Solution: We first compute the components of $\mathbf{v}+\mathbf{w}$, that is,

$$
\mathbf{v}+\mathbf{w}=\langle(2-1),(3+2)\rangle \quad \Rightarrow \quad \mathbf{v}+\mathbf{w}=\langle 1,5\rangle .
$$

Therefore, its magnitude is

$$
|\mathbf{v}+\mathbf{w}|=\sqrt{1^{2}+5^{2}} \quad \Rightarrow \quad|\mathbf{v}+\mathbf{w}|=\sqrt{26}
$$

A similar calculation can be done for $\mathbf{v}-\mathbf{w}$, that is,

$$
\mathbf{v}-\mathbf{w}=\langle(2+1),(3-2)\rangle \quad \Rightarrow \quad \mathbf{v}-\mathbf{w}=\langle 3,1\rangle .
$$

Therefore, its magnitude is

$$
|\mathbf{v}-\mathbf{w}|=\sqrt{3^{2}+1^{2}} \quad \Rightarrow \quad|\mathbf{v}-\mathbf{w}|=\sqrt{10}
$$

Addition and scalar multiplication.

Theorem
If the vector $\mathbf{v} \neq \mathbf{0}$, then the vector $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector.
Proof: (Case $\mathbf{v} \in \mathbb{R}^{2}$ only).
If $\mathbf{v}=\left\langle v_{x}, v_{y}\right\rangle \in \mathbb{R}^{2}$, then $|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$, and

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\left\langle\frac{v_{x}}{|\mathbf{v}|}, \frac{v_{y}}{|\mathbf{v}|}\right\rangle
$$

This is a unit vector, since

$$
|\mathbf{u}|=\left|\frac{\mathbf{v}}{|\mathbf{v}|}\right|=\sqrt{\left(\frac{v_{x}}{|\mathbf{v}|}\right)^{2}+\left(\frac{v_{y}}{|\mathbf{v}|}\right)^{2}}=\frac{1}{|\mathbf{v}|} \sqrt{v_{x}^{2}+v_{y}^{2}}=\frac{|\mathbf{v}|}{|\mathbf{v}|}=1 .
$$

Addition and scalar multiplication.

Theorem
Every vector $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ in \mathbb{R}^{3} can be expressed in a unique way as a linear combination of vectors $\mathbf{i}=\langle 1,0,0\rangle$,
$\mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$ as follows

$$
\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k} .
$$

Proof: Use the definitions of vector addition and scalar multiplication as follows,

$$
\begin{aligned}
\mathbf{v} & =\left\langle v_{x}, v_{y}, v_{z}\right\rangle \\
& =\left\langle v_{x}, 0,0\right\rangle+\left\langle 0, v_{y}, 0\right\rangle+\left\langle 0,0, v_{z}\right\rangle \\
& =v_{x}\langle 1,0,0\rangle+v_{y}\langle 0,1,0\rangle+v_{z}\langle 0,0,1\rangle \\
& =v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k} .
\end{aligned}
$$

Addition and scalar multiplication.

Example

Express the vector with initial and terminal points $P_{1}=(1,0,3)$,
$P_{2}=(-1,4,5)$ in the form $\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$.
Solution: First compute the components of $\mathbf{v}=\overrightarrow{P_{1} P_{2}}$, that is,

$$
\mathbf{v}=\langle(-1-1),(4-0),(5-3)\rangle=\langle-2,4,2\rangle
$$

Then, $\mathbf{v}=-2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$.

Example

Find a unit vector \mathbf{w} opposite to \mathbf{v} found above.
Solution: Since $|\mathbf{v}|=\sqrt{(-2)^{2}+4^{2}+2^{2}}=\sqrt{4+16+4}=\sqrt{24}$, we conclude that $\mathbf{w}=-\frac{1}{\sqrt{24}}\langle-2,4,2\rangle$.

