

## Vectors in $\mathbb{R}^2$ and $\mathbb{R}^3$ .

#### Definition

A vector in  $\mathbb{R}^n$ , with n = 2, 3, is an ordered pair of points in  $\mathbb{R}^n$ , denoted as  $\overrightarrow{P_1P_2}$ , where  $P_1, P_2 \in \mathbb{R}^n$ . The point  $P_1$  is called the *initial point* and  $P_2$  is called the *terminal point*.



#### Remarks:

- A vector in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  is an oriented line segment.
- A vector is drawn by an arrow pointing to the terminal point.
- A vector is denoted not only by  $\overrightarrow{P_1P_2}$  but also by an arrow over a letter, like  $\vec{v}$ , or by a boldface letter, like  $\mathbf{v}$ .





#### Components of a vector in Cartesian coordinates Theorem Given the points $P_1 = (x_1, y_1)$ , $P_2 = (x_2, y_2) \in \mathbb{R}^2$ , the vector $\overrightarrow{P_1P_2}$ determines a unique ordered pair, called vector components, $\langle \overrightarrow{P_1P_2} \rangle = \langle (x_2 - x_1), (y_2 - y_1) \rangle.$ УĄ Proof: Draw the vector $P_1 P_2$ in $P_2$ $\mathbf{y}_2$ Cartesian coordinates. $\overline{P_1P_2}$ $(y_{2} - y_{1})$ У<sub>1</sub> $(x_2 - x_1)$ X 1 $\mathbf{X}_2$ х

Remark: A similar result holds for vectors in space.

## Components of a vector in Cartesian coordinates

Theorem

Given the points  $P_1 = (x_1, y_1, z_1)$ ,  $P_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$ , the vector  $\overrightarrow{P_1P_2}$  fixes a unique ordered triple, called vector components,

$$\langle \overrightarrow{P_1P_2} \rangle = \langle (x_2-x_1), (y_2-y_1), (z_2-z_1) \rangle.$$



### Components of a vector in Cartesian coordinates

#### Example

Find the components of a vector with initial point  $P_1 = (1, -2, 3)$ and terminal point  $P_2 = (3, 1, 2)$ .

#### Solution:

$$\langle \overrightarrow{P_1P_2} \rangle = \langle (3-1), (1-(-2)), (2-3) \rangle \Rightarrow \langle \overrightarrow{P_1P_2} \rangle = \langle 2, 3, -1 \rangle.$$

#### Example

Find the components of a vector with initial point  $P_3 = (3, 1, 4)$ and terminal point  $P_4 = (5, 4, 3)$ .

Solution:

$$\langle \overrightarrow{P_3P_4} \rangle = \langle (5-3), (4-1), (3-4) \rangle \Rightarrow \langle \overrightarrow{P_3P_4} \rangle = \langle 2, 3, -1 \rangle.$$

Remark:  $\overrightarrow{P_1P_2}$  and  $\overrightarrow{P_3P_4}$  have the same components although they are different vectors.

## Components of a vector in Cartesian coordinates

#### Remark:

The vector components determine a vector up to translations.

Notice that  $\mathbf{u} \neq \mathbf{v} \neq \overrightarrow{0P}$ , since they have different initial and terminal points. However,  $\langle \mathbf{u} \rangle = \langle \mathbf{v} \rangle = \langle \overrightarrow{0P} \rangle = \langle v_x, v_y \rangle$ .



#### Definition

The standard position vector of a vector with components  $\langle v_x, v_y \rangle$  is the vector  $\overrightarrow{0P}$ , where the point 0 = (0, 0) is the origin of the Cartesian coordinates and the point  $P = (v_x, v_y)$ .

Notation: We identify vectors with their components:  $\mathbf{v} = \langle \mathbf{v} \rangle$ .





# Magnitude of a vector and unit vectors. Definition The magnitude or length of a vector $\overrightarrow{P_1P_2}$ is the distance from the initial point to the terminal point. • If the vector $\overrightarrow{P_1P_2}$ has components $\overrightarrow{P_1P_2} = \langle (x_2 - x_1), (y_2 - y_1), (z_2 - z_1) \rangle$ , then its magnitude, denoted as $|\overrightarrow{P_1P_2}|$ , is given by $|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ . • If the vector **v** has components $\mathbf{v} = \langle v_x, v_y, v_z \rangle$ , then its magnitude, denoted as $|\mathbf{v}|$ , is given by $|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$ .

## Magnitude of a vector and unit vectors.

#### Example

Find the length of a vector with initial point  $P_1 = (1, 2, 3)$  and terminal point  $P_2 = (4, 3, 2)$ .

Solution: First find the component of the vector  $\overrightarrow{P_1P_2}$ , that is,

$$\overrightarrow{P_1P_2} = \langle (4-1), (3-2), (2-3) \rangle \quad \Rightarrow \quad \overrightarrow{P_1P_2} = \langle 3, 1, -1 \rangle.$$

Therefore, its length is

$$\left|\overrightarrow{P_1P_2}\right| = \sqrt{3^2 + 1^2 + (-1)^2} \quad \Rightarrow \quad \left|\overrightarrow{P_1P_2}\right| = \sqrt{11}.$$

#### Example

If the vector  ${\bf v}$  represents the velocity of a moving particle, then its length  $|{\bf v}|$  represents the speed of the particle.  $\lhd$ 

## Magnitude of a vector and unit vectors. Definition A vector $\mathbf{v}$ is a *unit vector* iff $\mathbf{v}$ has length one, that is, $|\mathbf{v}| = 1$ . Example Show that $\mathbf{v} = \left\langle \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right\rangle$ is a unit vector. Solution: $|\mathbf{v}| = \sqrt{\frac{1}{14} + \frac{4}{14} + \frac{9}{14}} = \sqrt{\frac{14}{14}} \Rightarrow |\mathbf{v}| = 1$ . Example The unit vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$ , $\mathbf{j} = \langle 0, 1, 0 \rangle$ , and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are useful to express any other vector in $\mathbb{R}^3$ .



#### Definition

Given the vectors  $\mathbf{v} = \langle v_x, v_y, v_z \rangle$ ,  $\mathbf{w} = \langle w_x, w_y, w_z \rangle$  in  $\mathbb{R}^3$ , and a number  $a \in \mathbb{R}$ , then the vector addition,  $\mathbf{v} + \mathbf{w}$ , and the scalar multiplication,  $a\mathbf{v}$ , are given by

$$\mathbf{v} + \mathbf{w} = \langle (v_x + w_x), (v_y + w_y), (v_z + w_z) \rangle,$$
  
 $a\mathbf{v} = \langle av_x, av_y, av_z \rangle.$ 

Remarks:

- The vector  $-\mathbf{v} = (-1)\mathbf{v}$  is called the *opposite* of vector  $\mathbf{v}$ .
- ► The difference of two vectors is the addition of one vector and the opposite of the other vector, that is, v - w = v + (-1)w. This equation in components is

$$\mathbf{v}-\mathbf{w}=\langle (v_x-w_x),(v_y-w_y),(v_z-w_z)\rangle.$$

## Addition and scalar multiplication.

Remark: The addition of two vectors is equivalent to the parallelogram law: The vector  $\mathbf{v} + \mathbf{w}$  is the diagonal of the parallelogram formed by vectors  $\mathbf{v}$  and  $\mathbf{w}$  when they are in their standard position.





#### Example

Given the vectors  $\mathbf{v} = \langle 2, 3 \rangle$  and  $\mathbf{w} = \langle -1, 2 \rangle$ , find the magnitude of the vectors  $\mathbf{v} + \mathbf{w}$  and  $\mathbf{v} - \mathbf{w}$ .

Solution: We first compute the components of  $\mathbf{v} + \mathbf{w}$ , that is,

$$\mathbf{v}+\mathbf{w}=\langle (2-1),(3+2)
angle \quad \Rightarrow \quad \mathbf{v}+\mathbf{w}=\langle 1,5
angle.$$

Therefore, its magnitude is

$$|\mathbf{v} + \mathbf{w}| = \sqrt{1^2 + 5^2} \quad \Rightarrow \quad |\mathbf{v} + \mathbf{w}| = \sqrt{26}.$$

A similar calculation can be done for  $\mathbf{v} - \mathbf{w}$ , that is,

$$\mathbf{v} - \mathbf{w} = \langle (2+1), (3-2) \rangle \quad \Rightarrow \quad \mathbf{v} - \mathbf{w} = \langle 3, 1 \rangle$$

Therefore, its magnitude is

$$|\mathbf{v} - \mathbf{w}| = \sqrt{3^2 + 1^2} \quad \Rightarrow \quad |\mathbf{v} - \mathbf{w}| = \sqrt{10}.$$

Theorem If the vector  $\mathbf{v} \neq \mathbf{0}$ , then the vector  $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$  is a unit vector.

Proof: (Case  $\mathbf{v} \in \mathbb{R}^2$  only). If  $\mathbf{v} = \langle v_x, v_y \rangle \in \mathbb{R}^2$ , then  $|\mathbf{v}| = \sqrt{v_x^2 + v_y^2}$ , and

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \Big\langle \frac{v_x}{|\mathbf{v}|}, \frac{v_y}{|\mathbf{v}|} \Big\rangle.$$

This is a unit vector, since

$$|\mathbf{u}| = \left|\frac{\mathbf{v}}{|\mathbf{v}|}\right| = \sqrt{\left(\frac{v_x}{|\mathbf{v}|}\right)^2 + \left(\frac{v_y}{|\mathbf{v}|}\right)^2} = \frac{1}{|\mathbf{v}|}\sqrt{v_x^2 + v_y^2} = \frac{|\mathbf{v}|}{|\mathbf{v}|} = 1.$$

Addition and scalar multiplication.

Theorem

Every vector  $\mathbf{v} = \langle \mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z \rangle$  in  $\mathbb{R}^3$  can be expressed in a unique way as a linear combination of vectors  $\mathbf{i} = \langle 1, 0, 0 \rangle$ ,  $\mathbf{j} = \langle 0, 1, 0 \rangle$ , and  $\mathbf{k} = \langle 0, 0, 1 \rangle$  as follows

$$\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

Proof: Use the definitions of vector addition and scalar multiplication as follows,

$$\mathbf{v} = \langle v_x, v_y, v_z \rangle$$
  
=  $\langle v_x, 0, 0 \rangle + \langle 0, v_y, 0 \rangle + \langle 0, 0, v_z \rangle$   
=  $v_x \langle 1, 0, 0 \rangle + v_y \langle 0, 1, 0 \rangle + v_z \langle 0, 0, 1 \rangle$   
=  $v_x \mathbf{i} + v_y \mathbf{i} + v_z \mathbf{k}$ .



#### Example

Express the vector with initial and terminal points  $P_1 = (1, 0, 3)$ ,  $P_2 = (-1, 4, 5)$  in the form  $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$ .

Solution: First compute the components of  $\mathbf{v} = \overrightarrow{P_1P_2}$ , that is,

$$\mathbf{v}=\langle (-1-1),(4-0),(5-3)
angle =\langle -2,4,2
angle.$$

 $\triangleleft$ 

Then, v = -2i + 4j + 2k.

#### Example

Find a unit vector  $\mathbf{w}$  opposite to  $\mathbf{v}$  found above.

Solution: Since  $|\mathbf{v}| = \sqrt{(-2)^2 + 4^2 + 2^2} = \sqrt{4 + 16 + 4} = \sqrt{24}$ , we conclude that  $\mathbf{w} = -\frac{1}{\sqrt{24}} \langle -2, 4, 2 \rangle$ .