Cartesian coordinates in space (Sect. 12.1).

- Overview of Multivariable Calculus.
- Cartesian coordinates in space.
- Right-handed, left-handed Cartesian coordinates.
- Distance formula between two points in space.
- Equation of a sphere.

Overview of Multivariable Calculus

Mth 132, Calculus I: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, differential calculus.
Mth 133 , Calculus II: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, integral calculus.
Mth 234, Multivariable Calculus:

$$
\left.\begin{array}{rl}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y) \\
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z)
\end{array}\right\} \quad \text { scalar-valued. } \quad \begin{aligned}
& \mathbf{r}: \mathbb{R} \rightarrow \\
& \left.\mathbb{R}^{3}, \quad \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle \quad\right\} \quad \text { vector-valued. }
\end{aligned}
$$

We study how to differentiate and integrate such functions.

The functions of Multivariable Calculus

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the temperature T of an object, say a room. Each point (x, y, z) in the room is associated with a number, its temperature $T(x, y, z)$.
- An example of a vector-valued function of one variable, $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$, is the position function in time of a particle moving in space, say a fly in a room. Each time t is associated with the position vector $\mathbf{r}(t)$ of the fly in the room.

Cartesian coordinates in space (Sect. 12.1).

- Overview of vector calculus.
- Cartesian coordinates in space.
- Right-handed, left-handed Cartesian coordinates.
- Distance formula between two points in space.
- Equation of a sphere.

Cartesian coordinates.

Cartesian coordinates on \mathbb{R}^{2} : Every point on a plane is labeled by an ordered pair (x, y) by the rule given in the figure.

Cartesian coordinates in \mathbb{R}^{3} : Every point in space is labeled by an ordered triple (x, y, z) by the rule given in the figure.

Cartesian coordinates.

Example

Sketch the set $S=\{x \geqslant 0, y \geqslant 0, z=0\} \subset \mathbb{R}^{3}$.
Solution:

Cartesian coordinates.

Example

Sketch the set $S=\{0 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 2, z=1\} \subset \mathbb{R}^{3}$.
Solution:

Cartesian coordinates in space (Sect. 12.1).

- Overview of vector calculus.
- Cartesian coordinates in space.
- Right-handed, left-handed Cartesian coordinates.
- Distance formula between two points in space.
- Equation of a sphere.

Right and left handed Cartesian coordinates.

Definition
A Cartesian coordinate system is called right-handed (rh) iff it can be rotated into the coordinate system in the figure.

Definition

A Cartesian coordinate system is called left-handed (lh) iff it can be rotated into the coordinate system in the figure.

No rotation transforms a rh into a lh system.

Right and left handed Cartesian coordinates.

Example

This coordinate system is right-handed.

Example

This coordinate system is left handed.

Right and left handed Cartesian coordinates

Remark: The same classification occurs in \mathbb{R}^{2} :

This classification is needed in \mathbb{R}^{3} because:

- In \mathbb{R}^{3} we will define the cross product of vectors, and this product has different results in rh or Ih Cartesian coordinates.
- There is no cross product in \mathbb{R}^{2}.

In class we use rh Cartesian coordinates.

Cartesian coordinates in space (Sect. 12.1).

- Overview of vector calculus.
- Cartesian coordinates in space.
- Right-handed, left-handed Cartesian coordinates.
- Distance formula between two points in space.
- Equation of a sphere.

Distance formula between two points in space.

Theorem
The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The distance between points in space is crucial to define the idea of limit to functions in space.

Proof.

Pythagoras Theorem.

$$
\left|P_{1} P_{2}\right|^{2}=a^{2}+\left(z_{2}-z_{1}\right)^{2}, \quad a^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} .
$$

Distance formula between two points in space

Example

Find the distance between $P_{1}=(1,2,3)$ and $P_{2}=(3,2,1)$.
Solution:

$$
\begin{gathered}
\left|P_{1} P_{2}\right|=\sqrt{(3-1)^{2}+(2-2)^{2}+(1-3)^{2}} \\
\left|P_{1} P_{2}\right|=\sqrt{4+0+4}=\sqrt{8}
\end{gathered}
$$

We conclude that

$$
\left|P_{1} P_{2}\right|=2 \sqrt{2} .
$$

Distance formula between two points in space

Example

Use the distance formula to determine whether three points in space are collinear.
Solution:

$$
d_{21}+d_{32}>d_{31}
$$

Not collinear,

$d_{21}+d_{32}=d_{31}$
Collinear.

Cartesian coordinates in space (12.1)

- Overview of vector calculus.
- Cartesian coordinates in space.
- Right-handed, left-handed Cartesian coordinates.
- Distance formula between two points in space.
- Equation of a sphere.

A sphere is a set of points at fixed distance from a center.

Definition

A sphere centered at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ of radius R is the set

$$
S=\left\{P=(x, y, z):\left|P_{0} P\right|=R\right\} .
$$

Remark: The point (x, y, z) belongs to the sphere S iff holds

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2} .
$$

("iff" means "if and only if.")

An open ball is a set of points contained in a sphere.

Definition

An open ball centered at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ of radius R is the set

$$
B=\left\{P=(x, y, z):\left|P_{0} P\right|<R\right\} .
$$

A closed ball centered at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ of radius R is the set

$$
B=\left\{P=(x, y, z):\left|P_{0} P\right| \leqslant R\right\} .
$$

Remark: The point (x, y, z) belongs to the open ball B iff holds

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}<R^{2} .
$$

Equation of a sphere

Example

Plot a sphere centered at $P_{0}=(0,0,0)$ of radius $R>0$.

Solution:

Equation of a sphere

Example

Graph the sphere $x^{2}+y^{2}+z^{2}+4 y=0$.
Solution: Complete the square.

$$
\begin{gathered}
0=x^{2}+y^{2}+4 y+z^{2} \\
0=x^{2}+\left[y^{2}+2\left(\frac{4}{2}\right) y+\left(\frac{4}{2}\right)^{2}\right]-\left(\frac{4}{2}\right)^{2}+z^{2} \\
0=x^{2}+\left(y+\frac{4}{2}\right)^{2}+z^{2}-4 \\
x^{2}+y^{2}+4 y+z^{2}=0 \Leftrightarrow x^{2}+(y+2)^{2}+z^{2}=2^{2}
\end{gathered}
$$

Equation of a sphere

Example

Graph the sphere $x^{2}+y^{2}+z^{2}+4 y=0$.
Solution: $x^{2}+y^{2}+4 y+z^{2}=0 \quad \Leftrightarrow \quad x^{2}+(y+2)^{2}+z^{2}=2^{2}$.
Then, we conclude that $P_{0}=(0,-2,0)$ and $R=2$. Therefore,

Equation of a sphere

Example

- Given constants a, b, c, and $d \in \mathbb{R}$, show that

$$
x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d
$$

is the equation of a sphere iff holds

$$
\begin{equation*}
d>-\left(a^{2}+b^{2}+c^{2}\right) . \tag{1}
\end{equation*}
$$

- Furthermore, show that if Eq. (1) is satisfied, then the expressions for the center P_{0} and the radius R of the sphere are given by

$$
P_{0}=(a, b, c), \quad R=\sqrt{d+\left(a^{2}+b^{2}+c^{2}\right)} .
$$

