
Lines and planes in space (Sect. 12.5)

Lines in space (Today).

I Review: Lines on a plane.

I The equations of lines in space:

I Vector equation.
I Parametric equation.

I Distance from a point to a line.

Planes in space (Next class).

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.

Review: Lines on a plane

Equation of a line

The equation of a line with slope
m and vertical intercept b is
given by

y = mx + b.
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Vector equation of a line

The equation of the line by the
point P = (0, b) parallel to the
vector v = 〈1,m〉 is given by

r(t) = r0 + t v,

where r0 =
−→
OP = 〈0, b〉.
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Review: Lines on a plane

Example

Find the vector equation of a line y = −x + 3.

Solution: The vertical intercept is at the point P = (0, 3).

A vector tangent to the line is v = 〈1,−1〉, since the point
P1 = (1, 2) belongs to the line, which implies that

v =
−−→
PP1 = 〈(1− 0), (2− 3)〉 = 〈1,−1〉.

The vector equation for the line is

r(t) = 〈0, 3〉+ t 〈1,−1〉.
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P = ( 0 , 3 )
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r  = OP
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Review: Lines on a plane

We verify the result above: That the line y = −x + 3 is indeed

r(t) = 〈0, 3〉+ t 〈1,−1〉, (Vector equation of the line.)

If r(t) = 〈x(t), y(t)〉, then 〈x(t), y(t)〉 = 〈(0 + t), (3− t)〉.
That is,

x(t) = t,

y(t) = 3− t.

(Parametric equation of the line.)

(The parameter is t.)

Replacing t by x is the second equation above we obtain

y(x) = −x + 3.



Review: Lines on a plane

Vector equation of a line

The equation of the line by the
point P = (0, b) parallel to the
vector v = 〈1,m〉 is given by

r(t) = r0 + t v,

where r0 =
−→
OP = 〈0, b〉.
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Parametric equation of a line

A line with vector equation

r(t) = r0 + t v,

where r0 = 〈0, b〉 and v = 〈1,m〉
can also be written as follows

〈x(t), y(t)〉 = 〈(0+ t), (b + tm)〉,

that is,

x(t) = t

y(t) = b + mt.

Lines and planes in space (Sect. 12.5)

Lines in space

I Review: Lines on a plane.

I The equations of lines in space:

I Vector equation.
I Parametric equation.

I Distance from a point to a line.



A line is specified by a point and a tangent vector

Vector equation of a line

Definition
Fix Cartesian coordinates
in R3 with origin at a
point O. Given a point P
and a vector v in R3, the
line by P parallel to v is
the set of terminal points
of the vectors

r(t) = r0 + t v, t ∈ R,

where r0 =
−→
OP.
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We refer to a line to mean both the
set of vectors r(t) and the set of
terminal points of these vectors.

Vector equation of a line.

Example

Find the vector equation of the line by the point P = (1,−2, 1)
tangent to the vector v = 〈1, 2, 3〉.

Solution:
The vector r0 =

−→
OP = 〈1,−2, 1〉, therefore, the formula

r(t) = r0 + t v implies

r(t) = 〈1,−2, 1〉+ t 〈1, 2, 3〉.

C



Lines and planes in space (Sect. 12.5)

Lines in space

I Review: Lines on a plane.

I The equations of lines in space:

I Vector equation.
I Parametric equation.

I Distance from a point to a line.

Parametric equation of a line.

Definition
The parametric equations of a line by P = (x0, y0, z0) tangent to
v = 〈vx , vy , vz〉 are given by

x(t) = x0 + t vx ,

y(t) = y0 + t vy ,

z(t) = z0 + t vz .

Remark: It is simple to obtain the parametric equations form the
vector equation, and vice-versa, noticing the relation

r(t) = r0 + t v

〈x(t), y(t), z(t)〉 = 〈x0, y0, z0〉+ t 〈vx , vy , vz〉
= 〈(x0 + t vx), (y0 + t vy ), (z0 + t vz)〉.



Parametric equation of a line.

Example

Find the parametric equations of the line with vector equation

r(t) = 〈1,−2, 1〉+ t 〈1, 2, 3〉.

Solution: Rewrite the vector equation in vector components,

〈x(t), y(t), z(t)〉 = 〈(1 + t), (−2 + 2t), (1 + 3t)〉.

We conclude that
x(t) = 1 + t,

y(t) = −2 + 2t,

z(t) = 1 + 3t.

C

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the
line containing the points P = (1, 2,−3) and Q = (3,−2, 1).

Solution: A vector tangent to the line is v =
−→
PQ, which is given by

v = 〈(3− 1), (−2− 2), (1 + 3)〉 ⇒ v = 〈2,−4, 4〉.

We can use either P or Q to express the vector equation for the
line. If we use P, then the vector equation of the line is

r(t) = 〈1, 2,−3〉+ t 〈2,−4, 4〉.

If we choose Q, the vector equation of the line is

r(s) = 〈3,−2, 1〉+ s 〈2,−4, 4〉.

We use s to do not confuse it with the t above .



Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the
line containing the points P = (1, 2,−3) and Q = (3,−2, 1).

Solution: The parametric equation of the line is simple to obtain
once the vector equation is known. Since

r(t) = 〈1, 2,−3〉+ t 〈2,−4, 4〉,

then 〈x(t), y(t), z(t)〉 = 〈(1 + 2t), (2− 4t), (−3 + 4t)〉.
Then, the parametric equations of the line are given by

x(t) = 1 + 2t,

y(t) = 2− 4t,

z(t) = −3 + 4t.

C

Parallel lines, perpendicular lines, intersections

Definition
The lines r(t) = r0 + t v and r̂(t) = r̂0 + t v̂ are parallel iff their
tangent vectors v and v̂ are parallel; they are perpendicular iff v
and v̂ are perpendicular; and the lines intersect iff they have a
common point.
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Perpendicular lines in space may not intersect.
Non-parallel lines in space may not intersect.



Parallel lines, perpendicular lines, intersections

Example

Find the line through P = (1, 1, 1) and
parallel to the line
r̂(t) = 〈1, 2, 3〉+ t 〈2,−1, 1〉
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Solution:
We need to find r0 and v such that r(t) = r0 + t v.

The vector r0 is simple to find: r0 =
−→
OP = 〈1, 1, 1〉.

The vector v is simple to find too: v = 〈2,−1, 1〉.
We conclude: r(t) = 〈1, 1, 1〉+ t 〈2,−1, 1〉. C

Example

Find the line through P = (1, 1, 1)
perpendicular to and intersecting the
line r̂(t) = 〈1, 2, 3〉+ t 〈2,−1, 1〉
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Solution:
Find a point S on the intersection such that

−→
PS is perpendicular to

v̂ = 〈2,−1, 1〉. Writing St = r̂(t) = 〈(1 + 2t), (2− t), (3 + t)〉,

−−→
PSt = 〈2t, (1− t), (2 + t)〉 ⊥ v̂ = 〈2,−1, 1〉 ⇔

−−→
PSt · v̂ = 0.

0 =
−−→
PSt · v̂ = 4t + (−1 + t) + (2 + t) = 6t + 1 ⇒ t0 = −1

6
.

−−→
PS0 =

〈
−2

6
,
(
1 +

1

6

)
,
(
2− 1

6

)〉
⇒

−−→
PS0 =

1

6
〈−2, 7, 11〉.

r(t) =
−→
OP + t

−−→
PS0 ⇒ r(t) = 〈1, 1, 1〉+

t

6
〈−2, 7, 11〉.

C



Lines and planes in space (Sect. 12.5)

Lines in space

I Review: Lines on a plane.

I The equations of lines in space:

I Vector equation.
I Parametric equation.

I Distance from a point to a line.

Distance from a point to a line.

Theorem
The distance from a point S in space to a line through the point P
with tangent vector v is given by

d =
|
−→
PS × v |
|v |

.

d =  PS   sin( 0 )
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Distance from a point to a line.

d =  PS   sin( 0 )
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Proof.
The distance from the point S to the line passing by the point P
with tangent vector v is given by

d = |
−→
PS | sin(θ).

Recalling that |
−→
PS × v| = |

−→
PS | |v| sin(θ), we conclude that

d =
|
−→
PS × v|
|v|

.

Distance from a point to a line.

Example

Find the distance from the point
S = (1, 2, 1) to the line

x = 2− t, y = −1 + 2t, z = 2 + 2t.

d =  PS   sin( 0 )
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Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector v = 〈−1, 2, 2〉.
(The vector components are the numbers that multiply t.)
This line contains the vector P = (2,−1, 2).
(Just evaluate the line above at t = 0.)

Therefore,
−→
PS = 〈−1, 3,−1〉.



Example

Find the distance from the point
S = (1, 2, 1) to the line

x = 2− t, y = −1 + 2t, z = 2 + 2t.

d =  PS   sin( 0 )
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Solution:
So far: P = (2,−1, 2), v = 〈−1, 2, 2〉, and

−→
PS = 〈−1, 3,−1〉.

Since d = |
−→
PS × v|/|v|, we need to compute:

−→
PS × v =

∣∣∣∣∣∣
i j k
−1 3 −1
−1 2 2

∣∣∣∣∣∣ = (6 + 2) i− (−2− 1) j + (−2 + 3) k,

that is,
−→
PS × v = 〈8, 3, 1〉. We then compute the lengths:

|
−→
PS × v| =

√
64 + 9 + 1 =

√
74, |v| =

√
1 + 4 + 4 = 3.

The distance from S to the line is d =
√

74/3.

Exercise
Consider the lines

x(t) = 1 + t, x(s) = 2s,

y(t) =
3

2
+ 3t, y(s) = 1 + s,

z(t) = −t, z(s) = −2 + 4s.

Are the lines parallel? Do they intersect?

Answer:
The lines are not parallel.

The lines intersect at P =
(
1,

3

2
, 0

)
. C



Lines and planes in space (Sect. 12.5)

Planes in space.

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.

A point an a vector determine a plane.

Definition
Given a point P0 and a non-zero vector n in R3, the plane by P0

perpendicular to n is the set of points P solution of the equation(−−→
P0P

)
· n = 0.
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A point an a vector determine a plane.

Example

Does the point P = (1, 2, 3) belong to
the plane containing P0 = (3, 1, 2) and
perpendicular to n = 〈1, 1, 1〉?

0

n

P

P

n

Solution: We need to know if the vector
−−→
P0P is perpendicular to n.

We first compute
−−→
P0P as follows,

−−→
P0P = 〈(1− 3), (2− 1), (3− 2)〉 ⇒

−−→
P0P = 〈−2, 1, 1〉.

This vector is orthogonal to n, since(−−→
P0P

)
· n = −2 + 1 + 1 = 0.

We conclude that P belongs to the plane. C

Lines and planes in space (Sect. 12.5)

Planes in space.

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.



Equation of a plane in Cartesian coordinates

Theorem
Given any Cartesian coordinate system, the point P = (x , y , z)
belongs to the plane by P0 = (x0, y0, z0) perpendicular to
n = 〈nx , ny , nz〉 iff holds

(x − x0)nx + (y − y0)ny + (z − z0)nz = 0.

Furthermore, the equation above can be written as

nxx + nyy + nzz = d , d = nxx0 + nyy0 + nzz0.
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Equation of a plane in Cartesian coordinates

Theorem
Given any Cartesian coordinate system, the point P = (x , y , z)
belongs to the plane by P0 = (x0, y0, z0) perpendicular to
n = 〈nx , ny , nz〉 iff holds

(x − x0)nx + (y − y0)ny + (z − z0)nz = 0.

Furthermore, the equation above can be written as

nxx + nyy + nzz = d , d = nxx0 + nyy0 + nzz0.

Proof.
In Cartesian coordinates

−−→
P0P = 〈(x − x0), (y − y0), (z − z0)〉.

Therefore, the equation of the plane is

0 =
(−−→
P0P

)
· n = (x − x0)nx + (y − y0)ny + (z − z0)nz .



Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing P0 = (1, 2, 3) and
perpendicular to n = 〈1,−1, 2〉.

Solution: The point P = (x , y , z) belongs to the plane above iff(−−→
P0P

)
· n = 0, that is,

〈(x − 1), (y − 2), (z − 3)〉 · 〈1,−1, 2〉 = 0.

Computing the dot product above we get

(x − 1)− (y − 2) + 2(z − 3) = 0.

The equation of the plane can be also written as

x − y + 2z = 5.

C

Equation of a plane in Cartesian coordinates

Example

Find a point P0 and the perpendicular vector n to the plane
2x + 4y − z = 3.

Solution: We know that the general equation of a plane is

nxx + nyy + nzz = d .

The components of the vector n, called normal vector, are the
coefficients that multiply the variables x , y and z . Therefore,

n = 〈2, 4,−1〉.

A point P0 on the plane is simple to find. Just look for the
intersection of the plane with one of the coordinate axis.
For example: set y = 0, z = 0 and find x from the equation of the
plane: 2x = 3, that is x = 3/2. Therefore, P0 = (3/2, 0, 0). C



Equation of a plane in Cartesian coordinates

Example

Find the equation of the plane
containing the points P = (2, 0, 0),
Q = (0, 2, 1), R = (1, 0, 3).

P

Q

R

y

z

x

Solution:

Find two tangent vectors to the plane,

for example,
−→
PQ = 〈−2, 2, 1〉 and

−→
PR = 〈−1, 0, 3〉.
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Equation of a plane in Cartesian coordinates

Solution:

Find two tangent vectors to the plane,

for example,
−→
PQ = 〈−2, 2, 1〉 and

−→
PR = 〈−1, 0, 3〉.

P

Q

R

y

z

x

A normal vector n to the plane tangent to
−→
PQ and

−→
PR can be

obtained using the cross product: n =
−→
PQ ×

−→
PR. That is,

n =
−→
PQ ×

−→
PR =

∣∣∣∣∣∣
i j k
−2 2 1
−1 0 3

∣∣∣∣∣∣ = (6− 0) i− (−6 + 1) j + (0 + 2) k.

The result is: n =
−→
PQ ×

−→
PR = 〈6, 5, 2〉.

Choose any point on the plane, say P = (2, 0, 0).
Then, the equation of the plane is: 6(x − 2) + 5y + 2z = 0. C



Lines and planes in space (Sect. 12.5)

Planes in space.

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.

The line of intersection of two planes.

Example

Find a vector tangent to the line of
intersection of the planes
2x + y − 3z = 2 and −x + 2y − z = 1.

N

n

N

n

Solution:

We need to find a vector perpendicular
to both normal vectors n = 〈2, 1,−3〉
and N = 〈−1, 2,−1〉.

V

n

N

n N

We choose v = N× n. That is,

v = N× n =

∣∣∣∣∣∣
i j k
−1 2 −1
2 1 −3

∣∣∣∣∣∣ = (−6 + 1) i− (3 + 2) j + (−1− 4) k

Result: v = 〈−5,−5,−5〉. A simpler choice is v = 〈1, 1, 1〉. C



Lines and planes in space (Sect. 12.5)

Planes in space.

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.

Parallel planes and angle between planes

Definition
Two planes are parallel if their normal vectors are parallel. The
angle between two non-parallel planes is the smaller angle between
their normal vectors.

n
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n
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n N



Parallel planes and angle between planes

Example

Find the angle between the planes 2x + y − 3z = 2 and
−x + 2y − z = 1.

Solution: We need to find the angle between the normal vectors
n = 〈2, 1,−3〉 and N = 〈−1, 2,−1〉.

We use the dot product: cos(θ) =
n ·N
|n| |N|

.

The numbers we need are:

n ·N = −2 + 2 + 3 = 3,

|n| =
√

4 + 1 + 9 =
√

14, |N| =
√

1 + 4 + 1 =
√

6

Therefore, cos(θ) = 3/
√

84. We conclude that

θ = 70◦ 53′ 36′′.

C

Lines and planes in space (Sect. 12.5)

Planes in space.

I Equations of planes in space.
I Vector equation.
I Components equation.

I The line of intersection of two planes.

I Parallel planes and angle between planes.

I Distance from a point to a plane.



Distance formula from a point to a plane

Theorem
The distance d from a point P to a plane containing P0 with
normal vector n is the shortest distance from P to any point in the
plane, and is given by the expression

d =
|
(−−→
P0P

)
· n|

|n|
.

d

P

P

0

n

n

Distance formula from a point to a plane

Proof.
We need to proof the distance formula

d =
|
(−−→
P0P

)
· n|

|n|
.

d

P

P

0

n

n

From the picture we see that

d =
∣∣|−−→P0P| cos(θ)

∣∣,
where θ is the angle between

−−→
P0P and n, where the absolute value

are needed since the distance is a non-negative number. Recall:

(−−→
P0P

)
· n = |

−−→
P0P| |n| cos(θ) ⇒ |

−−→
P0P| cos(θ) =

(−−→
P0P

)
· n

|n|
.

Take the absolute value above, and that is the formula for d .



Distance formula from a point to a plane

Example

Find the distance from the point P = (1, 2, 3) to the plane
x − 3y + 2z = 4.

Solution: We need to find a point P0 on the plane and its normal

vector n. Then use the formula d = |
(−−→
P0P

)
· n|/|n|.

A point on the plane is simple to find: Choose a point that
intersects one of the axis, for example y = 0, z = 0, and x = 4.
That is, P0 = (4, 0, 0).
The normal vector is in the plane equation: n = 〈1,−3, 2〉.
We now compute

−−→
P0P = 〈−3, 2, 3〉. Then,

d =
| − 3− 6 + 6|√

1 + 9 + 4
⇒ d =

3√
14

.

C

Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Cones, x2

a2 + y2

b2 − z2

c2 = 0.

I Hyperboloids, x2

a2 + y2

b2 − z2

c2 = 1, − x2

a2 − y2

b2 + z2

c2 = 1.

I Paraboloids, x2

a2 + y2

b2 − z
c = 0.

I Saddles, x2

a2 − y2

b2 − z
c = 0.



Cylinders.

Definition
Given a curve on a plane, called the generating curve, a cylinder is
a surface in space generating by moving along the generating curve
a straight line perpendicular to the plane containing the generating
curve.

Example

A circular cylinder is the particular case
when the generating curve is a circle. In
the picture, the generating curve lies on
the xy -plane. x

z

r y

C

Example

Find the equation of the cylinder given
in the picture.

x

z

r y

Solution:
The intersection of the cylinder with the z = 0 plane is a circle
with radius r , hence points of the form (x , y , 0) belong to the
cylinder iff x2 + y2 = r2 and z = 0.

For z 6= 0, the intersection of horizontal planes of constant z with
the cylinder again are circles of radius r , hence points of the form
(x , y , z) belong to the cylinder iff x2 + y2 = r2 and z constant.

Summarizing, the equation of the cylinder is x2 + y2 = r2. We do
not mention the coordinate z , since the equation above holds for
every value of z ∈ R. C



Example

Find the equation of the cylinder given
in the picture.

y

r

x

z

Solution:
The generating curve is a circle, but this time on the plane y = 0.
Hence point of the form (x , 0, z) belong to the cylinder iff
x2 + z2 = r2.

We conclude that the equation of the cylinder above is

x2 + z2 = r2.

We do not mention the coordinate y , since the equation above
holds for every value of y ∈ R. C

Example

Find the equation of the cylinder given
in the picture.

4

z

y

x
parabola2

1

1

Solution:
The generating curve is a parabola on planes with constant y .

This parabola contains the points (0, 0, 0), (1, 0, 1), and (2, 0, 4).

Since three points determine a unique parabola and z = x2

contains these points, then at y = 0 the generating curve is z = x2.

The cylinder equation does not contain the coordinate y . Hence,

z = x2, y ∈ R.

C



Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres.
I Ellipsoids.
I Cones.
I Hyperboloids.
I Paraboloids.
I Saddles.

Quadratic surfaces.

Definition
Given constants ai , bi and c1, with i = 1, 2, 3, a quadratic surface
in space is the set of points (x , y , z) solutions of the equation

a1 x2 + a2 y2 + a3 z2 + b1 x + b2 y + b3 z + c1 = 0.

Remark:

I The coefficients b1, b2, b3 play a role moving around the
surface in space.

I We study only quadratic equations of the form:

a1 x2 + a2 y2 + a3 z2 + b3 z = c2. (1)

I The surfaces below are rotations of the one in Eq. (1),

a1 z2 + a2 x2 + a3 y2 + b3 y = c2,

a1 y2 + a2 x2 + a3 x2 + b3 x = c2.



Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres. x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids.
I Cones.
I Hyperboloids.
I Paraboloids.
I Saddles.

Spheres.

Recall: We study only quadratic equations of the form:

a1 x2 + a2 y2 + a3 z2 + b3 z = c2.

Example

A sphere is a simple quadratic surface, the
one in the picture has the equation

x2

r2
+

y2

r2
+

z2

r2
= 1.

(a1 = a2 = a3 = 1/r2, b3 = 0 and c2 = 1.)
Equivalently, x2 + y2 + z2 = r2.
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Spheres.

Recall: Linear terms move the surface around in space.

Example

Graph the surface given by the equation x2 + y2 + z2 + 4y = 0.

Solution: Complete the square:

x2 +
[
y2 + 2

(4

2

)
y +

(4

2

)2]
−

(4

2

)2
+ z2 = 0.

Therefore, x2 +
(
y + 4

2

)2
+ z2 = 4. This is

the equation of a sphere centered at
P0 = (0,−2, 0) and with radius r = 2. C
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Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Paraboloids.
I Cones.
I Hyperboloids.
I Saddles.



Ellipsoids.

Definition
Given positive constants a, b, c , an ellipsoid centered at the origin
is the set of point solution to the equation

x2

a2
+

y2

b2
+

z2

c2
= 1.

Example

Graph the ellipsoid,

x2 +
y2

32
+

z2

22
= 1. C
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Example

Graph the ellipsoid, x2 +
y2

32
+

z2

22
= 1.

Solution:

On the plane z = 0 we have the ellipse

x2 +
y2

32
= 1.
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On the plane z = z0, with −2 < z0 < 2

we have the ellipse x2 + y2

32 =
(
1− z2

0
22

)
.

Denoting c = 1− (z2
0/4), then

0 < c < 1, and
x2

c
+

y2

32c
= 1. C
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Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Cones, x2

a2 + y2

b2 − z2

c2 = 0.

I Hyperboloids.
I Paraboloids.
I Saddles.

Cones.

Definition
Given positive constants a, b, a cone centered at the origin is the
set of point solution to the equation

z = ±
√

x2

a2
+

y2

b2
.

Example

Graph the cone,

z =

√
x2 +

y2

32
. C 3
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Example

Graph the cone, z = +
√

x2

22 + y2.

Solution:

On the plane z = 1 we have the

ellipse
x2

22
+ y2 = 1.
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On the plane z = z0 > 0 we have

the ellipse
x2

22
+ y2 = z2

0 , that is,

x2

22z2
0

+
y2

z2
0

= 1. C −2

x

y

z

1

2

1

Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Cones, x2

a2 + y2

b2 − z2

c2 = 0.

I Hyperboloids, x2

a2 + y2

b2 − z2

c2 = 1, − x2

a2 − y2

b2 + z2

c2 = 1.

I Paraboloids.
I Saddles.



Hyperboloids.

Definition
Given positive constants a, b, c , a one sheet hyperboloid centered
at the origin is the set of point solution to the equation

x2

a2
+

y2

b2
− z2

c2
= 1.

(One negative sign, one sheet.)

Example

Graph the hyperboloid,

x2 +
y2

22
− z2 = 1. C
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Hyperboloids.

Example

Graph the hyperboloid x2 +
y2

22
− z2 = 1.

hyperbola
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Solution:
Find the intersection of the surface with horizontal and vertical
planes. Then combine all these results into a qualitative graph.

I On horizontal planes, z = z0, we obtain ellipses

x2 +
y2

22
= 1 + z2

0 .

I On vertical planes, y = y0, we obtain hyperbolas

x2 − z2 = 1− y2
0

22
.

I On vertical planes, x = x0, we obtain hyperbolas
y2

22
− z2 = 1− x2

0 .



Hyperboloids.

Definition
Given positive constants a, b, c , a two sheet hyperboloid centered
at the origin is the set of point solution to the equation

−x2

a2
− y2

b2
+

z2

c2
= 1.

(Two negative signs, two sheets.)

Example

Graph the hyperboloid,

−x2 − y2

22
+ z2 = 1. C

x

y

z

2
1

ellipse

hyperbola

hyperbola

Hyperboloids.

Example

Graph the hyperboloid

−x2 − y2

22
+ z2 = 1.
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Solution:
Find the intersection of the surface with horizontal and vertical
planes. Then combine all these results into a qualitative graph.

I On horizontal planes, z = z0, with |z0| > 1, we obtain ellipses

x2 +
y2

22
= −1 + z2

0 .

I On vertical planes, y = y0, we obtain hyperbolas

−x2 + z2 = 1 +
y2
0

22
.

I On vertical planes, x = x0, we obtain hyperbolas

−y2

22
+ z2 = 1 + x2

0 .



Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Cones, x2

a2 + y2

b2 − z2

c2 = 0.

I Hyperboloids, x2

a2 + y2

b2 − z2

c2 = 1, − x2

a2 − y2

b2 + z2

c2 = 1.

I Paraboloids, x2

a2 + y2

b2 − z
c = 0.

I Saddles.

Paraboloids.

Definition
Given positive constants a, b, a paraboloid centered at the origin is
the set of point solution to the equation

z =
x2

a2
+

y2

b2
.

Example

Graph the paraboloid,

z = x2 +
y2

22
. C parabola
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Paraboloids.

Example

Graph the paraboloid z = x2 +
y2

22
. parabola

y

z
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Solution:
Find the intersection of the surface with horizontal and vertical
planes. Then combine all these results into a qualitative graph.

I On horizontal planes, z = z0, with z0 > 0, we obtain ellipses

x2 +
y2

22
= z0.

I On vertical planes, y = y0, we obtain parabolas z = x2 +
y2
0

22
.

I On vertical planes, x = x0, we obtain parabolas z = x2
0 +

y2

22
.

Cylinders and quadratic surfaces (Sect. 12.6).

I Cylinders.
I Quadratic surfaces:

I Spheres, x2

r2 + y2

r2 + z2

r2 = 1.

I Ellipsoids, x2

a2 + y2

b2 + z2

c2 = 1.

I Cones, x2

a2 + y2

b2 − z2

c2 = 0.

I Hyperboloids, x2

a2 + y2

b2 − z2

c2 = 1, − x2

a2 − y2

b2 + z2

c2 = 1.

I Paraboloids, x2

a2 + y2

b2 − z
c = 0.

I Saddles, x2

a2 − y2

b2 − z
c = 0.



Saddles, or hyperbolic paraboloids.

Definition
Given positive constants a, b, c , a saddle centered at the origin is
the set of point solution to the equation

z =
x2

a2
− y2

b2
.

Example

Graph the paraboloid,

z = −x2 +
y2

22
. C
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Saddles.

Example

Graph the saddle

z = −x2 +
y2

22
.

parabola

x

z

y
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hyperbola

Solution:
Find the intersection of the surface with horizontal and vertical
planes. Then combine all these results into a qualitative graph.

I On planes, z = z0, we obtain hyperbolas −x2 +
y2

22
= z0.

I On planes, y = y0, we obtain parabolas z = −x2 +
y2
0

22
.

I On planes, x = x0, we obtain parabolas z = −x2
0 +

y2

22
.


