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Directional derivative and gradient vector

e Definition of directional derivative. (Sec. 14.6)
e Directional derivative and partial derivatives.
e Gradient vector.

e Geometrical meaning of the gradient.

N )

(1

derivatives to any direction

~

he directional derivative generalizes the partial

Definition 1 The directional derivative of the function
f(x,y) at the point (x¢,yo) in the direction of a unit
vector u = (Ug, uy) if
o1
Duf('r(b yO) = 151-01 ; [f(xo + u:l:ta Yo + uyt> - f(x(b 3/0)] )
iof the limit exists.

Particular cases:

e u=(1,0) =1, then D;f(zo,y0) = fz(x0, y0)-

e u=(0,1) =j, then D;f(x0,v0) = fy (70, v0)-
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Recall the definition of partial derivatives

(r

derivatives to any direction

~

he directional derivative generalizes the partial
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|lu| = 1 implies that ¢ is the distance between the
points (z,y) = (xo + ust, yo + uyt) and (xo, yo)

d = |<x_x07y_y0>‘7
= [uat, uyt)|,

The directional derivative of f(x,y) at (xo,yo) along u is the pointwise
rate of change of f with respect to the distance along the line parallel to

u passing through (zo, yo).

N )
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Here is a useful formula to compute directional
derivative

Theorem 1 If f(x,y) is differentiable and u = (uy, u,)
1$ a unit vector, then

Duf(x0,y0) = fe(T0, Yo) ta + [y (70, Yo) ty.

The proof is based in the chain rule, case 1

N )
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Proof of the theorem

Chain rule case 1, for z(t) = xo + ust, y(t) = yo + uy,t.
Then, (1) = f(x(t), y(1)).
On the one hand,

dz
dt

Slide 7 .
— lim 4 [=(t) - 2(0)),

t—0 ¢

t=0

1
= lim g[f(:co + uyt, yo + uyt) — f(xo,%0)],

t—0

= Duf(20,%0)-

/Proof of the theorem (Cont.) \

On the other hand,

L) = L)y ) S0+ fy a0, y0) L),

= fo(@(t), y(t)us + fy(x(t), y(t))uy,

Slide 8 then7
dz

dt

= fa(20, yo)us + fy(ilfoa yo)“y-
t=0

Therefore,

Dy f(z0,90) = f2(T0, Yo)ua + fy(0, Yo)uy.

N )
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Example about how to compute a directional
derivative

Let f(z,y) = sin(x + 2y). Compute the directional
derivative of f(z,y) at (4, —2) in the direction § = 7/6.

Slide 9 u = (cos(f),sin(F)), u=(v3/2,1/2).
Also
fo = cos(@+2y), f, = 2cos(z +2y),
then
Duf(z,y) = cos(z+ 2y)us + 2cos(z + 2y)uy,
Duf(4,—2) = g 1

4 N

Directional derivatives can be defined on
functions of 2, 3 or more variables

Definition 2 (functions of 3 variables)

Slide 10 The directional derivative of the function f(x,y,z) at the
point (o, Yo, z0) in the direction of a unit vector

U = (Uy, Uy, Uy) 1S

Du f(z0, Y0, 20) = tlgr(l)% [f (w0 + uat, yo + uyt, zo + u=t) — f(z0, Y0, 20)] ,

if the limit exists.

N )
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The same useful theorem we had in 2 variable
functions

Theorem 2 If f(x,y, z) is differentiable and
u = (Uy, Uy, us) is a unit vector, then

Du f(x0,90,20) = fa(20, Y0, 20) Uz + fy (20, Yo, 20) uy + f=(20, Yo, 20)U.

N )
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The directional derivative can be written in terms
of a dot product

In the case of 2 variable functions:
Duf = f$u$ + fyuy = (Vf) - u,
with Vf = (fx,fy>

In the case of 3 variable functions:
Dyuf = faug + fyuy + fou, = (Vf) -,

N )
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We introduce the gradient vector for functions of
2 or 3 variables

Definition 3 Let f(x,y, 2z) be a differentiable function.
Then,

Vf(a:,y,z) = <fx($,y,2),fy(l’,y,Z),fZ(SC,y,Z)>,
is called the gradient of f(z,y,z).

In 2 variables: Vf(z,y) = (fo(x,y), fy(z,v)).

Alternative notation: Vf = foi+ f,j+ f-k.

N )

Slide 13

Ghe useful theorem now has the following form \

Theorem 3 Let f(x,y, z) be differentiable function.
Then,

Duf(x) = (V/(x))-u.
with ju| = 1.
Slide 14

foey) =x"+y?
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Gradient vector The gradient vector has two main
properties:

Slide 15 e [t points in the direction of the maximum increase of
f, and |V f| is the value of the maximum increase
rate.

e Vf is normal to the level surfaces.

N )
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Here is the first property of the gradient vector

Theorem 4 Let f be a differentiable function of 2 or 3
) variables. Fixz Py € D(f), and let u be an arbitrary unit
Slide 16

vector.

Then, the mazimum value of Dy f(Py) among all possible
directions is |V f(Py)|, and it is achieved for u parallel to

Vi(F).

N )
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The proof of the first property

Duf(Po) = (Vf(P))-u,
= [V (Po)[|ulcos(0),

Slide 17 |V f(Po)| cos(h).

But —1 < cos(f) < 1 implies
=|Vf(Po)l < Duf(Po) < |V f(Fo)l-

And Dy f(Po) = |Vf(Po)|, © 0 =0 < u is parallel Vf(P).

N

-

Here is the second property of the gradient
vector, in the case of 3 variable functions

Slide 18 . .
Theorem 5 Let f(x,y,z) be a differentiable at Pj.

Then, V f(Fy) is orthogonal to the plane tangent to a
level surface containing Fy.

N
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Proof of the second property

Let r(t) be any differentiable curve in the level surface f(z,y,z) = k.
Assume that r(t = 0) = OP,. Then,

daf

dt’

_ dx dy dz
Slide 19 = e v T
= VIk() GO,

0 =

dxr

But (dr)/(dt) is tangent to the level surface for any choice of r(t).

Therefore
r

Vit =0) 2 (t=0)=0

implies that V f(Py) is orthogonal to the level surface. |

N )
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Local and absolute maxima, minima, and
inflection points

Slide 20 e Definitions of local extrema. (Sec. 14.7)
e Characterization of local extrema.
e Absolute extrema on closed and bounded sets.

e Typical exercises.

N )
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Recall the main results on local extrema for f(x)

at f oo
a max. 0 <O
b infl. #0 +0F
c min. 0 >0
d infl. =0 +0F

/The main cases of local extrema for f(z,y) \

11
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The intuitive notions of local extrema can be
written precisely as follows

Definition 4 (Local maximum) A function f(z,y)
has a local mazimum at (a,b) € D(f) < f(x,y) < f(a,b)
for all (x,y) near (a,b).

Definition 5 (Local minimum) A function f(x,y) has
a local minimum at (a,b) € D(f) < f(z,y) > f(a,b) for
all (z,y) near (a,b).

N )
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The tangent plane to the graph of f at a local
max-min is horizontal

Theorem 6 Let f(x,y) be differentiable at (a,b). If f
has a local mazimum or minimum at (a,b) then

Vf(a,b) =(0,0).
Recall: n = (f,, f,, —1) = (0,0, —1).

The converse is not true: It could be a saddle
point

N )
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Stationary points include local maxima, minima,
and saddle points

Definition 6 (Stationary point) Let f(x,y) be a
differentiable function at (a,b). If V f(a,b) = (0,0), then
the point (a,b) is called a stationary point of f.

Stationary point are located where the gradient
vector vanishes

N )

Theorem 7 (Second derivative test) Let (a,b) be a\
stationary point of f(x,y), that is, V f(a,b) = 0. Assume
that f(z,y) has continuous second derivatives in a disk
with center in (a,b). Introduce the quantity

D = faa(a,b) fyy(a,b) — [fay(a, b)]z-
e I[f D >0 and f,.(a,b) >0, then f(a,b) is a local

MINIMUM.

o [f D >0 and f..(a,b) <0, then f(a,b) is a local

MATLMUM.

e If D <0, then f(a,b) is a saddle point.

o [f D =0 the test is inconclusive.

13
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Find the local extrema of f(z,y) = y* — z?

Vf=(-2x2y), = Vf=(00) at (0,0).
f:vzv(()?O) = -2, fyy(()?O) = 2, fry(()?O) =0,

D=(-2)(2)=—-4<0 = saddle point at (0,0).

N

)

-

Is (0,0) a local extrema of f(z,y) = y?z*?

Vf(z,y) = (2zy® 2y2*), =
V£(0,0) = (0,0) at (0,0).

foz(,y) = 2927 fo(T,y) = 2x27 fay(m,y) = 4y,
f22(0,0) =0, f,,(0,0) =0, fuy(0,0) =0,

So D = 0 and the test is inconclusive.

N

14
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From the graph of f = 2%y? is easy to see that

(0,0) is a global minimum

<y

~

-

Find the maximum volume of a closed
rectangular box with a given surface area A

Viz,y,2) =zyz, Alzr,y,z)=2xy+2xz+ 2yz.
But A(x,y, z) = Ay, then
A —2zy
2@ +y)’
Find VV (zo,y0) = (0,0).

The result is zg = yo = 20 = 1/ Ao/6.

Agzy — 22%y?

= Viby= 2(z +y)

N
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Local extrema need not be the absolute extrema

f(x)

Absolute extrema may not be defined on open
intervals

N )

/Continuous functions f(z) on intervals [a, b always\
have absolute extrema

f(x)

Intervals [a,b] are bounded and closed sets in R

Because they do not extend to infinity, and the boundary

kpoints belong to the set. /

16
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in

N

Here is the generalization of closed and bounded
intervals to IR?

Definition 7 A set D C IR? is bounded if it can be
contained in a disk. A set D € IR? is closed if it contains

all its boundary points.

A point P € IR? is a boundary point of a set D if every disk with center

P always contains both points in D and points not in D.

~

)

('

ere are examples of bounded sets

{2* +y* < 1},

{=* +9y° <1},

Open and bounded.

Closed and bounded.

17
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Here are more examples of different types of sets

closed and

unbounded

closed and bounded

4 N

Continuous functions on bounded and closed sets
always have absolute extrema

Theorem 8 If f(x,y) is continuous in a closed and
bounded set D C IR?, then f has an absolute mazimum

and an absolute minimum in D.

N )
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Suggestions to find absolute extrema of f(x,y) in
a closed and bounded set

e Find every stationary point of f.

(Vf(z,y) = 0. No second derivative test needed.)

e Find the extrema (max. and min.) values of f on the
boundary of D.

e The biggest (smallest) of the previous steps is the

absolute maximum (minimum).

N )

4 N

Here is a typical exercise

Find the absolute extrema of f(xz,y) = 4z + 6y — 2% — ¢,
on D={(z,y) e R* 0<x<4, 0<y<5}

Absolute minimum: (4,0), (0,0).
Absolute maximum: (2, 3).

N )
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Lagrange’s multipliers

e Example of the method.
e Maximization of functions subject to constraints.
e Examples.

e Generalization to more than one constraint.

N )

/Example: Find the rectangle of biggest area with\
fixed perimeter F,

One way to solve the problem is:
Az,y) =zy, Po=P(z,y)=2x+2y,

then y = Py/2 — z, and replace it in A(z,y),
P
Alz) = 2o — 2*.
2
The stationary points of this function are
Py Py Py
= A’ = _9 = =
0 (z) 5 T, =>e=5, S Y=
So the answer is the square of side

N )

20
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Idea behind the Lagrange multipliers method

y=A/x

y=—-x+P/2

Level curves of A = zy, Level curves of the
constraint P = 2z + 2y.

N )

Ghe gradient vectors of A(z,y) and of the \
constraint P = 2z + 2y are parallel at the solution

\ y =A/X

y=—-x+P/2

21
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Lecture 18

KI‘he same problem solved with the Lagrange \
multipliers method

Find the mazimum of A(x,y) = xy subject to the
constraint P(x,y) = 2x + 2y = P.
One has to find the (z,y) such that
VA(z,y) = A\VP(z,y), P(z,y) = P,
with A # 0. From the first equation one has
(y,2) =A(2,2), = z=2\y=2\

Then the constraint Py = 2x 4 2y implies that Py = 8\, so the answer is
_ R
=0

N )

=1y

4 )

Lagrange multipliers method can be summarized
as follows:

The extrema values of f(x,y) subject to the constraint
g(x,y) = k can be obtained as follows:

e Find all solutions (zg, ) and A of the equations
V f(x0,40) = AVg(xo, yo),
9(z0, Yo) = k.

e Evaluate f at every solution (xg,yo). The largest and
smallest values are respectively the maximum and

minimum values of f subject to the constraint g = k.

N )

22
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Lagrange multipliers method for functions of
three variables

The extrema values of f(x,y, z) subject to the constraint
g(x,y,z) = k can be obtained as follows:
e Find all solutions (g, yo, z0) and A of the equations
Vf@oa Yo, ZO) - )\Vg('rm Yo, ZO)?
9(o, Yo, 20) = k.
e Evaluate f at every solution (zg, 3o, 20). The largest

and smallest values are respectively the maximum and

minimum values of f subject to the constraint g = k.

N )

/Example: Find the rectangular box of maximum\

volume for fixed area.

The function is V(z,y, z) = 2yz. The constraint function is
A(z,y,2z) = 2zy + 2xz + 2yz. The constraint is A(z,y, z) = Ao.

Find the (z,y, z) solutions of

VV = AVA,
A= Ap.
These equations are:
yz =2z +y),
xz = 2X(z + 2),
ry = 2X\(z +y),

Ao = 2(zy + x2 + 2y).

kThe solution is x =y = z = /Ao /6. /

23



Math 20C Multivariable Calculus Lecture 18

Slide 47

Slide 48

/Example: Find the extrema values of
f(x,y) = 2* + 4*/4 in the circle 22 + y> =1
Then, f(z,y) = 2 +y?/4, and g(z,y) = 2> + y*. The equations are:
Vf=AVg, = (22,y/2) = A2z, 2y),
g=1, = x> + y2 =1.

Which imply

T = A, = (1-=XNz=0,
y/2 =2y, = (1/4 =Xy =0,
z? + y2 =1.

The solutions are: P = (0,+1), and P = (+1,0). Then:

f(0,£1) = 1/4, absolute minimum in the circle.

kf(:l:l, 0) = 1, absolute maximum in the circle.

~

/Generalization to two constraints

The extrema values of f(x,y, z) subject to the
constraints g(x,y, z) = k1 and h(x,y, z) = ks can be
obtained as follows:

e Find all solutions (g, yo, z0) and A of the equations

V f(x0, Yo, 20) = AV g(0, Yo, 20) + V h(xo, Yo, 20),
9(z0, Yo, 20) = k1,
h(xo, Yo, 20) = Ka.

e Evaluate f at every solution (zg, yo, 2z0). The largest
and smallest values are respectively the maximum
and minimum values of f subject to the constraint

K g=ky and h = k.

~

)
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