Directional derivative and gradient vector

- Definition of directional derivative. (Sec. 14.6)
- Directional derivative and partial derivatives.
- Gradient vector.
- Geometrical meaning of the gradient.

The directional derivative generalizes the partial derivatives to any direction

Definition 1 The directional derivative of the function f(x,y) at the point (x_0,y_0) in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y \rangle$ if

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{t \to 0} \frac{1}{t} \left[f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0) \right],$$

if the limit exists.

Particular cases:

- $\mathbf{u} = \langle 1, 0 \rangle = \mathbf{i}$, then $D_{\mathbf{i}} f(x_0, y_0) = f_x(x_0, y_0)$.
- $\mathbf{u} = \langle 0, 1 \rangle = \mathbf{j}$, then $D_{\mathbf{j}} f(x_0, y_0) = f_y(x_0, y_0)$.

Slide 1

 $|\mathbf{u}|=1$ implies that t is the distance between the points $(x,y)=(x_0+u_xt,y_0+u_yt)$ and (x_0,y_0)

Slide 5

$$d = |\langle x - x_0, y - y_0 \rangle|,$$

$$= |\langle u_x t, u_y t \rangle|,$$

$$= |t| |\mathbf{u}|,$$

$$= |t|.$$

The directional derivative of f(x, y) at (x_0, y_0) along **u** is the pointwise rate of change of f with respect to the distance along the line parallel to **u** passing through (x_0, y_0) .

Here is a useful formula to compute directional derivative

Slide 6

Theorem 1 If f(x,y) is differentiable and $\mathbf{u} = \langle u_x, u_y \rangle$ is a unit vector, then

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y.$$

The proof is based in the chain rule, case 1

Proof of the theorem

Chain rule case 1, for $x(t) = x_0 + u_x t$, $y(t) = y_0 + u_y t$. Then, z(t) = f(x(t), y(t)).

On the one hand,

Slide 7

$$\frac{dz}{dt}\Big|_{t=0} = \lim_{t\to 0} \frac{1}{t} [z(t) - z(0)],$$

$$= \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

$$= D_{\mathbf{u}} f(x_0, y_0).$$

Proof of the theorem (Cont.)

On the other hand,

$$\frac{dz}{dt}(t) = f_x(x(t), y(t)) \frac{dx}{dt}(t) + f_y(x(t), y(y)) \frac{dy}{dt}(t),
= f_x(x(t), y(t)) u_x + f_y(x(t), y(t)) u_y,$$

Slide 8

then,

$$\frac{dz}{dt}\Big|_{t=0} = f_x(x_0, y_0)u_x + f_y(x_0, y_0)u_y.$$

Therefore,

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)u_x + f_y(x_0, y_0)u_y.$$

Example about how to compute a directional derivative

Let $f(x,y) = \sin(x+2y)$. Compute the directional derivative of f(x,y) at (4,-2) in the direction $\theta = \pi/6$.

Slide 9

$$\mathbf{u} = \langle \cos(\theta), \sin(\theta) \rangle, \quad \mathbf{u} = \langle \sqrt{3}/2, 1/2 \rangle.$$

Also

$$f_x = \cos(x + 2y), \quad f_y = 2\cos(x + 2y),$$

then

$$D_{\mathbf{u}}f(x,y) = \cos(x+2y)u_x + 2\cos(x+2y)u_y,$$

 $D_{\mathbf{u}}f(4,-2) = \frac{\sqrt{3}}{2} + 1.$

Directional derivatives can be defined on functions of 2, 3 or more variables

Slide 10

Definition 2 (functions of 3 variables)

The directional derivative of the function f(x, y, z) at the point (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{t \to 0} \frac{1}{t} \left[f(x_0 + u_x t, y_0 + u_y t, z_0 + u_z t) - f(x_0, y_0, z_0) \right],$$
if the limit exists.

The same useful theorem we had in 2 variable functions

Slide 11

Slide 12

Theorem 2 If f(x, y, z) is differentiable and $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is a unit vector, then

 $D_{\mathbf{u}}f(x_0, y_0, z_0) = f_x(x_0, y_0, z_0) u_x + f_y(x_0, y_0, z_0) u_y + f_z(x_0, y_0, z_0) u_z.$

The directional derivative can be written in terms of a dot product

In the case of 2 variable functions:

$$D_{\mathbf{u}}f = f_x u_x + f_y u_y = (\nabla f) \cdot \mathbf{u},$$

with $\nabla f = \langle f_x, f_y \rangle$.

In the case of 3 variable functions:

$$D_{\mathbf{u}}f = f_x u_x + f_y u_y + f_z u_z = (\nabla f) \cdot \mathbf{u},$$

with $\nabla f = \langle f_x, f_y, f_z \rangle$.

We introduce the gradient vector for functions of 2 or 3 variables

Definition 3 Let f(x, y, z) be a differentiable function. Then,

Slide 13

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle,$$

is called the gradient of f(x, y, z).

In 2 variables: $\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$.

Alternative notation: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$.

The useful theorem now has the following form

Theorem 3 Let f(x, y, z) be differentiable function. Then,

$$D_{\mathbf{u}}f(\mathbf{x}) = (\nabla f(\mathbf{x})) \cdot \mathbf{u}.$$

with $|\mathbf{u}| = 1$.

Slide 14

Gradient vector The gradient vector has two main properties:

Slide 15

- It points in the direction of the maximum increase of f, and $|\nabla f|$ is the value of the maximum increase rate.
- ∇f is normal to the level surfaces.

Here is the first property of the gradient vector

Slide 16

Theorem 4 Let f be a differentiable function of 2 or 3 variables. Fix $P_0 \in D(f)$, and let \mathbf{u} be an arbitrary unit vector.

Then, the maximum value of $D_{\mathbf{u}}f(P_0)$ among all possible directions is $|\nabla f(P_0)|$, and it is achieved for \mathbf{u} parallel to $\nabla f(P_0)$.

The proof of the first property

Slide 17

$$D_{\mathbf{u}}f(P_0) = (\nabla f(P_0)) \cdot \mathbf{u},$$

= $|\nabla f(P_0)| |\mathbf{u}| \cos(\theta),$
= $|\nabla f(P_0)| \cos(\theta).$

But $-1 \le \cos(\theta) \le 1$ implies

$$-|\nabla f(P_0)| \le D_{\mathbf{u}} f(P_0) \le |\nabla f(P_0)|.$$

And $D_{\mathbf{u}}f(P_0) = |\nabla f(P_0)|, \Leftrightarrow \theta = 0 \Leftrightarrow \mathbf{u}$ is parallel $\nabla f(P_0)$.

Slide 18

Here is the second property of the gradient vector, in the case of 3 variable functions

Theorem 5 Let f(x, y, z) be a differentiable at P_0 . Then, $\nabla f(P_0)$ is orthogonal to the plane tangent to a level surface containing P_0 .

Proof of the second property

Let $\mathbf{r}(t)$ be any differentiable curve in the level surface f(x,y,z)=k. Assume that $\mathbf{r}(t=0)=\overrightarrow{OP}_0$. Then,

$$0 = \frac{df}{dt},$$

$$= f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt},$$

$$= \nabla f(\mathbf{r}(t)) \cdot \frac{dx\mathbf{r}}{dt}(t).$$

But $(d\mathbf{r})/(dt)$ is tangent to the level surface for any choice of $\mathbf{r}(t)$. Therefore

$$\nabla f(\mathbf{r}(t=0)) \cdot \frac{\mathbf{r}}{dt}(t=0) = 0$$

implies that $\nabla f(P_0)$ is orthogonal to the level surface.

Local and absolute maxima, minima, and inflection points

- Definitions of local extrema. (Sec. 14.7)
- Characterization of local extrema.
- Absolute extrema on closed and bounded sets.
- Typical exercises.

Slide 19

Recall the main results on local extrema for f(x)

Slide 21

Slide 22

 at
 f f' f''

 a \max .
 0 < 0

 b \inf .
 \neq 0 \pm $0 \mp$

 c \min .
 0 > 0

=0 $\pm 0\mp$

infl.

The main cases of local extrema for f(x,y)

The intuitive notions of local extrema can be written precisely as follows

Slide 23

Definition 4 (Local maximum) A function f(x, y) has a local maximum at $(a, b) \in D(f) \Leftrightarrow f(x, y) \leq f(a, b)$ for all (x, y) near (a, b).

Definition 5 (Local minimum) A function f(x,y) has a local minimum at $(a,b) \in D(f) \Leftrightarrow f(x,y) \geq f(a,b)$ for all (x,y) near (a,b).

The tangent plane to the graph of f at a local max-min is horizontal

Slide 24

Theorem 6 Let f(x,y) be differentiable at (a,b). If f has a local maximum or minimum at (a,b) then $\nabla f(a,b) = \langle 0,0 \rangle$.

Recall: $\mathbf{n} = \langle f_x, f_y, -1 \rangle = \langle 0, 0, -1 \rangle$.

The converse is not true: It could be a saddle point

Stationary points include local maxima, minima, and saddle points

Slide 25

Definition 6 (Stationary point) Let f(x,y) be a differentiable function at (a,b). If $\nabla f(a,b) = \langle 0,0 \rangle$, then the point (a,b) is called a stationary point of f.

Stationary point are located where the gradient vector vanishes

Theorem 7 (Second derivative test) Let (a,b) be a stationary point of f(x,y), that is, $\nabla f(a,b) = \mathbf{0}$. Assume that f(x,y) has continuous second derivatives in a disk with center in (a,b). Introduce the quantity

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}.$$

- If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.
- If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- If D < 0, then f(a, b) is a saddle point.
- If D = 0 the test is inconclusive.

Find the local extrema of $f(x,y) = y^2 - x^2$

 $\nabla f = \langle -2x, 2y \rangle, \Rightarrow \nabla f = \langle 0, 0 \rangle \text{ at } (0, 0).$ $f_{xx}(0, 0) = -2, \quad f_{yy}(0, 0) = 2, \quad f_{xy}(0, 0) = 0,$

 $D = (-2)(2) = -4 < 0 \implies \text{ saddle point at } (0,0).$

Is (0,0) a local extrema of $f(x,y) = y^2x^2$?

 $\nabla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \Rightarrow$ $\nabla f(0,0) = \langle 0,0 \rangle$ at (0,0).

 $f_{xx}(x,y) = 2y^2$, $f_{yy}(x,y) = 2x^2$, $f_{xy}(x,y) = 4xy$, $f_{xx}(0,0) = 0$, $f_{yy}(0,0) = 0$, $f_{xy}(0,0) = 0$,

So D=0 and the test is inconclusive.

Slide 27

From the graph of $f=x^2y^2$ is easy to see that (0,0) is a global minimum

Slide 29

Find the maximum volume of a closed rectangular box with a given surface area A_0

$$V(x, y, z) = xyz, \quad A(x, y, z) = 2xy + 2xz + 2yz.$$

Slide 30

But
$$A(x, y, z) = A_0$$
, then

$$z = \frac{A_0 - 2xy}{2(x+y)}, \quad \Rightarrow \quad V(x,y) = \frac{A_0xy - 2x^2y^2}{2(x+y)}.$$

Find $\nabla V(x_0, y_0) = \langle 0, 0 \rangle$.

The result is $x_0 = y_0 = z_0 = \sqrt{A_0/6}$.

Local extrema need not be the absolute extrema

a c b x

Absolute extrema may not be defined on open intervals

Continuous functions f(x) on intervals $\left[a,b\right]$ always have absolute extrema

Slide 32

Slide 31

Intervals [a, b] are bounded and closed sets in \mathbb{R}

Because they do not extend to infinity, and the boundary points belong to the set.

Here is the generalization of closed and bounded intervals to \mathbb{R}^2

Slide 33

Definition 7 A set $D \subset \mathbb{R}^2$ is bounded if it can be contained in a disk. A set $D \in \mathbb{R}^2$ is closed if it contains all its boundary points.

A point $P \in \mathbb{R}^2$ is a boundary point of a set D if every disk with center in P always contains both points in D and points not in D.

Here are examples of bounded sets

$$\{x^2 + y^2 \le 1\},\$$

Closed and bounded.

$$\{x^2 + y^2 < 1\},\$$

Open and bounded.

Slide 34

Here are more examples of different types of sets

Slide 35

Slide 36

Continuous functions on bounded and closed sets always have absolute extrema

Theorem 8 If f(x,y) is continuous in a closed and bounded set $D \subset \mathbb{R}^2$, then f has an absolute maximum and an absolute minimum in D.

Suggestions to find absolute extrema of f(x,y) in a closed and bounded set

Slide 37

- Find every stationary point of f. $(\nabla f(x,y) = \mathbf{0})$. No second derivative test needed.)
- \bullet Find the extrema (max. and min.) values of f on the boundary of D.
- The biggest (smallest) of the previous steps is the absolute maximum (minimum).

Here is a typical exercise

Slide 38

Find the absolute extrema of $f(x,y)=4x+6y-x^2-y^2,$ on $D=\{(x,y)\in I\!\!R^2,\quad 0\leq x\leq 4,\quad 0\leq y\leq 5\}$

Absolute minimum: (4,0), (0,0). Absolute maximum: (2,3).

Lagrange's multipliers

Slide 39

Slide 40

- Example of the method.
- Maximization of functions subject to constraints.
- Examples.
- Generalization to more than one constraint.

Example: Find the rectangle of biggest area with fixed perimeter P_0

One way to solve the problem is:

$$A(x,y) = xy, \quad P_0 = P(x,y) = 2x + 2y,$$

then $y = P_0/2 - x$, and replace it in A(x, y),

$$A(x) = \frac{P_0}{2}x - x^2.$$

The stationary points of this function are

$$0 = A'(x) = \frac{P_0}{2} - 2x, \Rightarrow x = \frac{P_0}{4}, \Rightarrow y = \frac{P_0}{4}.$$

So the answer is the square of side

$$x = y = \frac{P_0}{4}.$$

Idea behind the Lagrange multipliers method

y = A/x

y = -x + P/2

Level curves of A = xy,

Level curves of the constraint P = 2x + 2y.

Slide 42

Slide 41

The gradient vectors of A(x,y) and of the

constraint P = 2x + 2y are parallel at the solution

The same problem solved with the Lagrange multipliers method

Find the maximum of A(x, y) = xy subject to the constraint $P(x, y) = 2x + 2y = P_0$.

One has to find the (x, y) such that

$$\nabla A(x,y) = \lambda \nabla P(x,y), \quad P(x,y) = P_0,$$

with $\lambda \neq 0$. From the first equation one has

$$\langle y, x \rangle = \lambda \langle 2, 2 \rangle, \quad \Rightarrow \quad x = 2\lambda, y = 2\lambda.$$

Then the constraint $P_0 = 2x + 2y$ implies that $P_0 = 8\lambda$, so the answer is

$$x = y = \frac{P_0}{4}.$$

Lagrange multipliers method can be summarized as follows:

The extrema values of f(x, y) subject to the constraint g(x, y) = k can be obtained as follows:

• Find all solutions (x_0, y_0) and λ of the equations

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0),$$
$$g(x_0, y_0) = k.$$

• Evaluate f at every solution (x_0, y_0) . The largest and smallest values are respectively the maximum and minimum values of f subject to the constraint g = k.

Slide 44

Lagrange multipliers method for functions of three variables

The extrema values of f(x, y, z) subject to the constraint g(x, y, z) = k can be obtained as follows:

• Find all solutions (x_0, y_0, z_0) and λ of the equations

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0),$$

$$g(x_0, y_0, z_0) = k.$$

• Evaluate f at every solution (x_0, y_0, z_0) . The largest and smallest values are respectively the maximum and minimum values of f subject to the constraint g = k.

Example: Find the rectangular box of maximum volume for fixed area.

The function is V(x, y, z) = xyz. The constraint function is A(x, y, z) = 2xy + 2xz + 2yz. The constraint is $A(x, y, z) = A_0$.

Find the (x, y, z) solutions of

$$\nabla V = \lambda \nabla A,$$
$$A = A_0.$$

These equations are:

$$yz = 2\lambda(z+y),$$

$$xz = 2\lambda(x+z),$$

$$xy = 2\lambda(x+y),$$

$$A_0 = 2(xy+xz+zy).$$

The solution is $x = y = z = \sqrt{A_0/6}$.

Slide 45

Example: Find the extrema values of

$$f(x,y) = x^2 + y^2/4$$
 in the circle $x^2 + y^2 = 1$

Then, $f(x,y) = x^2 + y^2/4$, and $g(x,y) = x^2 + y^2$. The equations are:

$$\nabla f = \lambda \nabla g,$$
 \Rightarrow $\langle 2x, y/2 \rangle = \lambda \langle 2x, 2y \rangle,$ $g = 1,$ \Rightarrow $x^2 + y^2 = 1.$

Slide 47

Which imply

$$x = \lambda x,$$
 \Rightarrow $(1 - \lambda)x = 0,$
 $y/2 = 2\lambda y,$ \Rightarrow $(1/4 - \lambda)y = 0,$
 $x^2 + y^2 = 1.$

The solutions are: $P = (0, \pm 1)$, and $P = (\pm 1, 0)$. Then:

 $f(0,\pm 1)=1/4$, absolute minimum in the circle.

 $f(\pm 1,0) = 1$, absolute maximum in the circle.

Generalization to two constraints

The extrema values of f(x, y, z) subject to the constraints $g(x, y, z) = k_1$ and $h(x, y, z) = k_2$ can be obtained as follows:

• Find all solutions (x_0, y_0, z_0) and λ of the equations

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0),$$

$$g(x_0, y_0, z_0) = k_1,$$

$$h(x_0, y_0, z_0) = k_2.$$

• Evaluate f at every solution (x_0, y_0, z_0) . The largest and smallest values are respectively the maximum and minimum values of f subject to the constraint $g = k_1$ and $h = k_2$.