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Partial derivatives

e Review: Limits and continuity. (Sec. 14.2)
e Definition of Partial derivatives. (Sec. 14.3)
e Higher derivatives.

e Examples of differential equations.

N

-

We recall the definition of limit of f(z,y)

Let f(x,y) be a scalar function defined for P = (x,y)

near Py = (2o, yo). Let dp,p = \/(37 —20)? + (Y — %)
be the distance between (x,y) and (zg,yo). We write

lim f(z,y) =1L,

(z,y)—(x0,y0)

to mean that the values of f(z,y) approaches L as the
distance dp,p approaches zero.

N
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In this case lim, ) (2040 f(7,y) exists

Slide 3
(x(,,yo)
/In this case lim, ,)_.(0,0) f(7,y) does not exist
Z
f(x.y)
Slide 4

Compute side limits along C; and (),

N
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Continuous functions have graphs without holes

or jumps
Definition 1 f(z,y) is continuous at (xq,yo) if

f(l’,y) = f(x07y0)-

lim
(#,y)—(x0,y0)

Polynomial functions are continuous in IR?, for example

Py(z,y) = ap + bz + boy + o + Coxy + c3y2.

N )

4 N

More examples of continuous functions

e Rational functions are continuous on their domain,

Pu(z,y)

flz,y) = OMERDE

for example,

f(x,y)z ZL‘Q—?/Q ’

x # ty.

e Composition of continuous functions are continuous,

example
fla,y) = cos(z® +y?).

N )
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To compute partial derivative with respect to x
keep y constant

Definition 2 (z-partial derivative) Let

f:D C IR*— R C IR. The partial derivative of f(z,y)
with respect to x at (a,b) € D is denoted as f.(a,b) and
1S given by

fo(a,b) = lim % (Fla+hb) — f(ab)].

h—0

~

4 N

To compute partial derivative with respect to y
keep x constant

Definition 3 (y-partial derivative) Let

f:DC IR*>— R C IR. The partial deriative of f(x,vy)
with respect to y at (a,b) € D is denoted as f,(a,b) and
1S given by

fy(a,b) = lim%[f(a,bJrh) — f(a,b)].

h—0
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/Partial derivatives are slopes of lines tangent to
the graph of f(z,y)

Slide 9

N )

So, to compute the partial derivative of f(z,y) with respect to x at (a,b), one can do the
following: First, evaluate the function at y = b, that is compute f(z,b); second, compute
the usual derivative of single variable functions; evaluate the result at x = a, and the result

is fz(a,b).

Example:
e Find the partial derivative of f(x,y) = 22 4+ y?/4 with respect to z at (1, 3).

1. f(x,3) = 2%+ 9/4;
2. fu(x,3) = 2x;
3. fu(1,3) = 2.
To compute the partial derivative of f(z,y) with respect to y at (a,b), one follows the

same idea: First, evaluate the function at « = a, that is compute f(a,y); second, compute
the usual derivative of single variable functions; evaluate the result at y = b,, and the result

is fy(a,b).
Example:

e Find the partial derivative of f(z,y) = 2% + y?/4 with respect to y at (1, 3).
L f(ly) =1+y?/4
2. fy(Ly) =y/2;
3. f,(1,3) = 3/2.
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Partial derivatives define new functions

Definition 4 Consider a function
f:D C IR?> — R C IR. The functions partial derivatives
of f(x,y) are denoted by f.(x,y) and f,(x,y), and are

Slide 10 _ :
given by the expressions
.1
faolw,y) = lim o [f(z+hy) = fz,y)],
1
flayy) = lm o [fr,y+h) — f(z,y)].
The partial derivative functions of a paraboloid
are planes
f(z,y) = ax® + by + zy.
Slide 11

fe(z,y) = 2ax+0+y,
= 2ar +vy.

fy(z,y) = 0+42by + =z,
= 2by+ .
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The partial derivative functions of a paraboloid
are planes

Slide 12 ’ £,xy)

z
fx(xy)
y y y
X
X

N )

More examples:

2 —y

T+ 2y’

2(x +2y) — (22 —

e

20+ 4y —2x +y
(z + 2y)?
5y

(z+2y)*

flzy) =

)
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—(z+2y) — (22 —y)2
(z +2y)?
—5x
(x+2y)*

)

3e2Y 4+ 3y,
= 3z2 2y,
2x e2y + 3,
= 4z3e%,
= 8z3e?,
63?2 2y

6222V,

Higher derivatives of a function f(z,y) are partial
derivatives of its partial derivatives

For example, the second partial derivatives of f(x,y) are
the following:

Slide 13 foz(,y) = hm [fm<x +h,y) = fe(z, )],
Jyy(,y) = lim — [fy(x y+h)— fy(z,y)],
Jay(,y) = lim - [fx(x +hy) = fulz, )],
fyx(x y) - hm [fy(l' y + h) fy(l',y)] .
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Higher partial derivatives sometimes commute

Theorem 1 Consider a function f(x,y) in a domain D.

Assume that fr, and f,, exists and are continuous in D.
Then,

fa:y - fyx-

4 N

Differential equations are equations where the
unknown is a function

For example, the Laplace equation: Find
d(z,y,2) : D C IR* — IR solution of

gbxx + ¢yy + gbzz = 0.

This equation describes the gravitational effects near a massive object.

and where derivatives of the function enter into
the equation

N )
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More examples of differential equations

Heat equation: Find a function
T(t,z,y,z): D C IR* — IR solution of

E - TJ:J: + Tyy + Tzz

on that object.

N

The heat on a metal is described by this equation. T is the temperature

)

-

More examples of differential equations

Wave equation: Find a function
f(t,x,y,2): D C R* — IR solution of

ftt - fxx + fyy + fzz

The sound in the air is described by this equation. f is the air density.

N

)

10
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Exercises:

e Verify that the function T'(t,z) = e~ !sin(z) satisfies the one-space dimensional heat
equation Ty = Ty,.

e Verify that the function f(t,z) = (t — x)? satisfies the one-space dimensional wave
equation Ty = Tz

e Verify that the function below satisfies Laplace Equation,
1

T,Y,2) = ——m——————.
¢(2,y, 2) R

4 N

Differentiable functions (Sec. 14.4)

Slide 18 e Definition of differentiable functions.
e Equation of the tangent plane.

e Linear approximation. (Differentials.)

N )
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/A function can have partial derivatives at a point\
and be discontinuous at that point

00 =£00) =0
f(xy)

This is a very bad property for a definition of

kderivative /

4 N

Here is one of such functions, given explicitly

Fag) { 2y/(@* +y7)  (x,y) # (0,0),

’ 0 (z,y) = (0,0).
f2(0,0) = f,(0,0) = 0, although f(x,y) is not continuous
at (0,0).

N )

12
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Recall the following property of the derivative of
f(x)

Theorem 2 If f'(x) exists, then f(x) is continuous.

lim[f(e+h) = f@)] = lm{(f(z+h) - f@)]/h}h,

f— H ! f—
= }Llir})f (x)h =0.

The analogous claim “If f,(z,y) and f,(z,y) exists,
then f(x,y) is continuous” is false

N )

/One has to define a notion of derivative having \
the continuity property discussed above

f(x,y) =z L(x,y) Linear

approximation
at (x,Y,)

,,,,,,,,,,,,,,,,,,,,,,,,,,

New definition: A differentiable function must be
kzaLppI'o:)<:irrla’ced by a plane /

13
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In the case f(z) this definition says: The function
must be approximated by a line

fx)=y L(x)

Only for functions f(z) the derivative f'(x) implies
the existence of an approximating line L(z)

N )

4 N

A function of two variables is differentiable at
(o, Y0) if two conditions hold:

e There exists the plane from its partial derivatives at
(20, Yo);

e This plane approximates the graph of f(x,y) near
(20, Yo)-

N )

14
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Here is a rewording of the definition

(SCO, yo) if

and

N

Definition 5 The function f(z,y) is differentiable at

f<x7y> = L(xo,yo)(x7y) + 61(37 - .Z'(]) + 62(y - y0)7

where €;(z,y) — 0 when (z,y) — (xo,yo), fori=1,2,

Lz yo) (@, y) = fa(0, yo)(@—20)+ f (0, Yo) (y—10)+ f (20, ¥o)

)

property

continuous.

fxy) =z L(Xy)  Linear
approximation

at (xp¥y)

If f(x,y) is differentiable, then Ly, 4,)(%, ) is called the linear

Kapproximation of f(z,y) at (xo,yo).

/This notion of differentiability has the continuity\

Theorem 3 If f(x,y) is differentiable, then f(x,y) is

15
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The following result is useful to check the
differentiability of a function

Theorem 4 Consider a function f(x,y). Assume that
its partial derivatives f.(x,y), f,(z,y) exist at (xo,yo)
and near (xo,Yo), and both are continuous functions at
(xo,Y0). Then, f(z,y) is differentiable at (o, yo).

N )

/Consider the following exercise: \

1. Show that f(z,y) = arctan(z + 2y) is differentiable at
(1,0).

2. Find its linear approximation at (1,0).

1 2
L@y =1 arar MOV S T e

These functions are continuous in IR?, so f(x,y) is differentiable at every
point in IR?.
Loy(@,y) = f(1,0)(z — 1) + £, (1,0)(y — 0) + £(1,0),

where f(1,0) = arctan(1) = 7/4, f»(1,0) = 1/2, f,(1,0) = 1. Then,

1 ™
L(I,O)(xyy) = 5(-’5* D+y+ 1

4 N

N )

16
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Second exercise, on linear approximation

e Find the linear approximation of

flz,y) = V17 — 22 — 4y? at (2,1).

We need three numbers: f(2,1), fz(2,1), and fy(2,1). Then, we

compute the linear approximation by the formula

L(2,1)(x7y) = fl'(27 1)(‘T - 2) + fl/(27 1)(y - 1) + f(27 1)‘

The result is: f(2,1) =3, f2(2,1) = —2/3, and f,(2,1) = —4/3. Then
the plane is given by

Ly (z,y) = —g(x—Q) ——(y—1)+3.

N

~

(df is a special name for L (z) — f(xo)
Single variable case:
df (z) = Luy(2) — fl20) = f'(20)(x — 20) = f'(20)d.
We called (z — zg) = dux.

y
L(x)

At

£(xy)

~

17
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df (z,y) is a special name for L, ,.\(%,y) — f(z0,y0)
Functions of two variables:
df (2,y) = Liaoo) (2, y) — f (20, 0),
Slide 31 der =z —1x9, dy=1y—1yo.
Then, the formula is easy to remember:

df (z,y) = fu(x0,v0) dv + f, (w0, y0) dy.

Different names for the same idea: Compute the linear approximation of

a differentiable function.

N )

/An exercise on differentials \

e Compute the df of f(z,y) = In(1 + 2® + y?) at (1,1)
for de = 0.1, dy = 0.2.

df (zo,y0) = fe(zo,y0)dz + fy(xo,yo)dy,

Slide 32 = 220 dx + 2yo d
I+ 2+ T+

Then,

+
wiNo

df(1,1)

I
S

SHEEIESRIIN
Sles|=
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/Another exercise on differentials \

e Use differentials to estimate the amount of tin in a
closed tin can with internal diameter of 8cm and
height of 12c¢m if the tin is 0.04cm thick.

Data of the problem: ho = 12cm, 7o = 4em, dr = 0.04cm and
dh = 0.08cm. Draw a picture of the cylinder.

The function to consider is the volume of the cylinder,
V(r,h) = wr’h.
Then,
dV(ro,ho) = Vi(ro,ho)dr + Vi(ro, ho)dh,
2nrohodr + 7rr(2)dh
= 16.1cm.

N )

4 N

Chain rule and directional derivatives

e Review: Linear approximations. (Sec. 14.4)
e Chain rule. (Sec. 14.5)

e Cases 1 and 2. Examples.

N )

19
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Recall the chain rule for f(x)

Given f(z), and z(t) differentiable functions, introduce
z(t) = f(x(t)). Then, z(t) is differentiable, and

dz df dx
i %(f’f(t)) a(t)-

Or, using the new notation,

z(t) = fo(x(t)) . (1).

N

~

-

There are many chain rules for f(z,y)

Case 1: Given f(z,y) differentiable, and z(t), y(t)
differentiable functions of a single variable, then

2(t) = f(x(t),y(t)) is differentiable and

L e0.00) )+ a0, 0(0) L

20
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Example of Chain rule, case 1

flz,y) =2*+293,  a(t) =sin(t), y(t) = cos(2t).
Let z(t) = f(x(t),y(t)). Then,

dz dx 5 dy
o = e+ 6[y(t)] s
= 2z(t) cos(t) — 12[y(t)]?sin(2t),

= 2sin(t) cos(t) — 12 cos®(2t) sin(2t).

/Second case of chain rule for f(z,y)

Case 2: Let f(z,y) be differentiable, and x(t, s), y(t, s)
be also differentiable functions of a two variable.

Then z(t,s) = f(x(t,s),y(t,s)) is differentiable and

z(t,s) =
fe(@(t,5),y(t, 5)) 2i(t, s) + fy(x(t,8),y(t, 8)) yil(t, s)

zs(t, s) =

fola(t,s),y(t, s)) ws(t, s) + fy (2t 5),y(t, ) ys(t, 5)

N

~

)

21
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Second case of chain rule for f(z,y) again

Case 2: Let f(z,y) be differentiable, and x(t, s), y(t, s)
be also differentiable functions of a two variable.
Then z(t,s) = f(x(t,s),y(t,s)) is differentiable and

Zt:fx$t+fy?/t

Zs:fxxs+fyys

4 N

Example of chain rule, case 2

A change of coordinates:

Consider the function f(x,y) = 2? + ay?, with a € IR.
Introduce polar coordinates r, # by the formula

x(r,0) =rcos(0), y(r,8)=rsin(f).

Let z(r,0) = f(x(r,0),y(r,0)) be f in polar coordinates.

N

)

22
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A change of coordinates
Then, the chain rule, case 2, says that
Zr = foTr + fy Yr.
Each term can be computed as follows,
fo =22, f,2ay,
x, = cos(#), y, =sin(0),
then one has

2z = 21 cos®(0) + 2ar sin®(0).

N

23



