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Scalar functions of 2, 3 variables

e Graph and level curves/surfaces. (Sec. 14.1)

e Limits and continuity. (Sec. 14.2)

z f(x,y)

4 N

Scalar functions of 2 variables is denoted as f(z,y)

Definition 1 A scalar function f of two variables (z,vy)
1s a rule that assigns to each ordered pair

(r,y) € D C IR? a unique real number, denoted by
f(z,y), that is,

f:DCcR*—- RCR.
Examples:

flay)=2"+y% glz,y) =Ve—y.

N
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Compare f(z,y) with r(t)

e Vector valued functions,
r: R — IR
t— (x(t),y(1))
e Scalar function of two variables,
f:R*— R
(z,y) = f(z,y).

-

The graph of f(z,y) is a surface in IR?

Definition 2 The graph of a function f(z,y) is the set
of all points (x,y,2) in IR? of the form (z,y, f(x,y)).

foy) =x"+y?

~
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The domain of a function may not be the whole
plane

Consider f(z,y) =z —y.

y D={(xy): x>y}

/Curves of constant f(z,y) are called level curves \

Definition 3 The level curves of f(x,y) are the curves
in in the domain of f, D C IR?, solutions of the equation

flz,y) =k,
for k € R, a real constant in the range of f.

fx,y) = x7+y?
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Scalar functions of 3 variables are f(z,y, 2)

Definition 4 A scalar function f of three variables
(x,y, 2) is a rule that assigns to each ordered triple
(v,y,2) € D C IR?® a unique real number, denoted by
f(z,y,2), that is,

f:DCR*—=RCR.

Example: f(z,y,2) = 2% +y? + 2%

dimensions. We cannot picture such graph

N

The graph a function f(z,y, z) requires four space

~

)

k R2:f($,y72):$2+y2+2’2.

/Level curves can be generalized from f(z,y) to \
f(z,y,2). In this case they are called level surfaces

)
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The function f(x,y) has the number L as limiting
value at the point (x¢, 1) roughly means:

Ha—

X %)

that for all points (z,y) near (zg,yo) the value of
f(z,y) differs little from L

N )

4 N

The definition of limit requires the notion of
distance in the plane

Definition 5 Given a function f(z,y): D C R*> — IR
and a point (xg,y0) € IR*, we write

lim  f(z,y) =L,

(z,y)—(x0,y0)

if and only if for all (x,y) € D close enough in distance
to (xo, o) the values of f(x,y) approaches L.

N )
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lim  f(z,y) =L,

(z,y)—(x0,y0)

differs little from L

~

for all points (z,y) near (zo,yo) the value of f(x,y)

Limit laws for f(z) also holds for functions f(z,y)

If the limits limy .y, f and limy ., ¢ exist, then
lim (f+g) = <lim f) + (lim g),
X—X( X—XQ X—X(

lim (fg) = <lim f) (lim g>.

X—X( X—X( X—XQ

~
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Here is a tool to show that a limit does not exist

Theorem 1 If f(x,y) — L1 along a path Cy as
(2,9) — (20, 0), and £(z,y) — Ly along a path C as
(z,y) — (z0,v0), with Ly # Lo, then

lim  f(x,y) does not exist.
(z,y)—(z0,y0)

When side limits do not agree, the limit does not
exist

N )

4 N

Here is a tool to show that a limit does exist

Theorem 2 (Squeeze)

Assume f(2,y) < g(x,y) < h(z,y) for all (v,y) near
(x0,%0). Also assume

lim x,y)=L= lim Az, y).
(x7y)_)(x07y0) f< y> (x7y)_)(x0ay0) ( y>

Then
lim  g(z,y) = L.

(z,y)—(z0,y0)

N )
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Example: How to use the side limit theorem.

e Does the following limit exist?

2
m o (1)
(z,y)—(0,0) 2 + 2y2

So, the function is f(z,y) = (322)/(z? + 2y?). Let pick the curve C; as the z-axis,
that is, y = 0. Then,
32?
f(.’l?, O) = 2 = 37

T
then

lim z,0) = 3.
(x,0)—(0,0) f( )

Let us now pick up the curve Cy as the y-axis, that is, x = 0. Then,

f(oay) =0,

then

lim z,0) = 0.
(x,0)—(0,0) f( )

Therefore, the limit in (1) does not exist.

Notice that in the above example one could compute the limit for arbitrary lines, that is,
Cy, given by y = mazx, with m a constant. Then

flaoma) = = :
T, mr) = =
’ 22 +2m2x2 14 2m?2’
so one has that 5
lim fle,ma) = ——
(x,mz)—(0,0) 1+ 2m?2
is different for each value of m.
Example: How to use the squeeze theorem.
e Does the following limit exist?
2
lim —— 2)

(2,y)—(0,0) £2 4+ y2’

Let us first try the side limit theorem, to try to prove that the limit does not exist.
Consider the curves C,, given by y = mxz, with m a constant. Then

ZCQTI’L.Z' mx

flz,mz) = oS — Tt

so one has that
lim flx,mz) =0, VmeR.
(z,mzx)—(0,0)
Therefore, one cannot conclude that the limit does not exist. However, this argu-
ment does not prove that the limit actually exists.This can be done with the squeeze
theorem.

First notice that
2

A

2o Y (x,y) € R?, (x,y) # (0,0).
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(proof: 0 < y?, then 2% < (22 + y?).) Therefore, one has the inequality

2
T
—lyl < 2= <|yl, V(x,y) € B2 (x,y) # (0,0).
e +y

Then, one knows that lim,_,o |y| = 0, therefore the squeeze theorem says that
2
Y
(z,9)—(0,0) T° + ¥

4 N

Continuous functions have graphs without holes

or jumps

Definition 6 A function f(x,y) is continuous at (o, yo)
Slide 15 Zf hm(m,y)ﬂ(xo,yo) f(l‘7 y) = f(l’o, yO)

Polynomial functions are continuous in IR?, for example

Py(z,y) = ag + b1z + boy + c12° + comy + 39>

N )
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More examples of continuous functions

e Rational functions are continuous on their domain,

. Pn(:E, y)
f(z,y) = OMERDE

for example,

Ca— , T # ty.

flz,y) =

T

e Composition of continuous functions are continuous,

example
fla,y) = cos(z® +y?).

N

~

)

-

Partial derivatives

e Definition of Partial derivatives.
e Higher derivatives.

e Examples of differential equations.

N

10
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To compute partial derivative with respect to x
keep y constant

Definition 7 (z-partial derivative) Let

f:D C IR*— R C IR. The partial derivative of f(z,y)
with respect to x at (a,b) € D is denoted as f.(a,b) and
1S given by

fo(a,b) = lim % (Fla+hb) — f(ab)].

h—0

~

4 N

To compute partial derivative with respect to y
keep x constant

Definition 8 (y-partial derivative) Let

f:DC IR*>— R C IR. The partial deriative of f(x,vy)
with respect to y at (a,b) € D is denoted as f,(a,b) and
1S given by

fy(a,b) = lim%[f(a,bJrh) — f(a,b)].

h—0

11
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/Partial derivatives are slopes of lines tangent to
the graph of f(z,y)

Slide 20

N )

So, to compute the partial derivative of f(z,y) with respect to x at (a,b), one can do the
following: First, evaluate the function at y = b, that is compute f(z,b); second, compute
the usual derivative of single variable functions; evaluate the result at x = a, and the result

is fz(a,b).

Example:
e Find the partial derivative of f(x,y) = 22 4+ y?/4 with respect to z at (1, 3).

1. f(x,3) = 2%+ 9/4;
2. fu(x,3) = 2x;
3. fu(1,3) = 2.
To compute the partial derivative of f(z,y) with respect to y at (a,b), one follows the

same idea: First, evaluate the function at « = a, that is compute f(a,y); second, compute
the usual derivative of single variable functions; evaluate the result at y = b,, and the result

is fy(a,b).
Example:

e Find the partial derivative of f(z,y) = 2% + y?/4 with respect to y at (1, 3).
L f(ly) =1+y?/4
2. fy(Ly) =y/2;
3. f,(1,3) = 3/2.
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Partial derivatives define new functions

Definition 9 Consider a function
f:D C IR?> — R C IR. The functions partial derivatives
of f(x,y) are denoted by f.(x,y) and f,(x,y), and are

Slide 21 _ :
given by the expressions
.1
faolw,y) = lim o [f(z+hy) = fz,y)],
1
flayy) = lm o [fr,y+h) — f(z,y)].
Examples:

flzyy) = az®+by® +ay.
fo(®,y) = 2az+0+y,
= 2ax+y.
fy(zy) = 0+2by+a,
= 2by+z.
flzy) = 2°In(y),
fe(z,y) = 2xIn(y),
2
T
f z,y = -
y(z,y) ;

2
flz,y) = $2+yz,
fx(x,y) = 212,

—
2z — vy
flzy) =

x4+ 2y’

13
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2(x +2y) — (22 —y)

fe(zy) =

)

(z +2y)?

20 +4y —2x+y

(z +2y)?

)

5y

(x +2y)?

—(z+2y) — 2z —y)2

fy(l';y) =

)

(z +2y)?

—bx

(x +2y)?

e + 3y,
33:2 2y,
2z e2y + 3,
4a3e?Y,
8x3e?Y,
622e2Y,

6x2e2v.

Slide 22

Higher derivatives of a function f(z,y) are partial
derivatives of its partial derivatives

For example, the second partial derivatives of f(x,y) are
the following:

Joy(,y) = lim - [fy(x y+h) = fy(z,9)],

Jay(,y) = lim > [fx(th y) — fu(2,9)],

fya(,y) = lim - [fy(:c y+h)— fy(z,y)].

14
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Higher partial derivatives sometimes commute

Theorem 3 Consider a function f(x,y) in a domain D.

Assume that fy, and f,, exists and are continuous in D.
Then,

Slide 23

fmy = fy:v-
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Differential equations are equations where the
unknown is a function

For example, the Laplace equation: Find
é(x,y,2): D C IR* — IR solution of

gbxx + ¢yy + gbzz = 0.

Slide 24

This equation describes the gravitational effects near a massive object.

and where derivatives of the function enter into
the equation

N )

4 N

More examples of differential equations

Heat equation: Find a function

Slide 25 T(t,z,y,z): D C IR* — IR solution of

E - TJ:J: + Tyy + Tzz

The heat on a metal is described by this equation. T is the temperature

on that object.

N )
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More examples of differential equations

Wave equation: Find a function
Slide 26 f(t,z,y,2): D C R* — IR solution of

ftt = f:v:z: + fyy + fzz-

The sound in the air is described by this equation. f is the air density.

N

)

Exercises:

17

e Verify that the function T'(t,z) = e~ !sin(z) satisfies the one-space dimensional heat

equation Ty = Ty,.

e Verify that the function f(t,z) = (t — x)? satisfies the one-space dimensional wave

equation Ty = T)5.
e Verify that the function below satisfies Laplace Equation,
1

T,Y,2) = —F—m—.
¢(2,y, 2) e



