1. (6 points) Consider the vectors \(\mathbf{v} = (6, 2, -3) \) and \(\mathbf{w} = (-2, 2, 1) \).

(a) Find a vector normal to both, \(\mathbf{v} \) and \(\mathbf{w} \).

(b) Find the area of the parallelogram formed by \(\mathbf{v} \) and \(\mathbf{w} \).

(c) Find a vector of length one in the direction of \(\mathbf{v} \).
2. (6 points) Find an equation for the plane that passes through the points $(1, 1, 1)$, $(1, -1, 1)$, and $(0, 0, 2)$.
3. (6 points) Consider the line given by \(\mathbf{r}(t) = \langle 0, 1, 1 \rangle + \langle 1, 2, 3 \rangle t \) and the plane given by \(2x + y - z = 1 \).

(a) Does the line intersect the plane? If yes, find the intersection point. In any case, justify your answer.

(b) Find the equation of the line, passing through the point \((0, 1, 1)\) and orthogonal to the plane given above.
4. (6 points) A particle moves in a plane with a velocity function given by the expression \(\mathbf{v}(t) = (2 \sin(t), 3 \cos(t)) \), for \(t \geq 0 \).

(a) Find the acceleration \(\mathbf{a}(t) \) function of the particle.

(b) Find the position function \(\mathbf{r}(t) \) of the particle knowing that the initial position of the particle is \(\mathbf{r}(0) = (-1, 1) \).