Math 20A
 First Midterm Exam. October 22, 2002
 VERSION 2

Instructions: Fifty-five minutes. No books or notes; graphing calculators without symbolic manipulation programs are permitted. Do all 6 problems in your blue book. Show all work; unsubstantiated answers will not receive credit. Turn in your exam sheet with your blue book.

1. (20 points) The function $g(x)$ defined on the interval $(0,3)$ satisfies $g(1)=3$ and $g^{\prime}(1)=-1$.
(a) Find an equation for the line tangent to the graph $y=g(x)$ at $x=1$.
(b) Find the value of $\lim _{x \rightarrow 1} \frac{g(x)-3}{x-1}$.
2. (20 points) Find an exact value of $\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-\sqrt{3}}{x}$ and justify your answer.
3. (20 points) A car drives down a road and is at distance (in miles) $d(t)=60\left(\frac{1}{1+t}-\frac{1}{7}\right)$ from its destination after t hours.
(a) What is the average velocity while traveling between $t=2$ and $t=3$?
(b) Express its instantaneous velocity at time $t=2$ as a limit.
(c) Compute the limit.

Be sure to indicate the units in (a), (b), and (c) above.
4. (20 points) Prove that there is at least one negative real number x satisfying the equation $x^{3}-x+2=0$. (You must use a theorem, not just a graph.)
5. (20 points) Find all the horizontal asymptote(s) of the curve $y=\frac{x+3}{\sqrt{9 x^{2}+3}}$. Justify your answer.
6. (20 points) Let $a>0$ and consider

$$
f(x)= \begin{cases}5-a x^{2}, & x<1 \\ a^{x}+2, & x \geq 1\end{cases}
$$

Show that there is a unique value of a such that f is continuous at every real number. (A correct value of a will not be sufficient; you must justify your answer.)

