## Math 20A <br> Second Midterm Exam. November 19, 2002 <br> VERSION 2

Instructions: Fifty-five minutes. No books or notes; graphing calculators without symbolic manipulation programs are permitted. Do all 5 problems in your blue book. Show all work; unsubstantiated answers will not receive credit. Turn in your exam sheet with your blue book.

1. (20 points) Differentiate the following functions:
(a) $x^{2} \ln x$.
(b) $\sin \left(e^{5 x^{3}}\right)$.
2. (20 points) Use differentials to estimate the volume of paint required to cover the surface of a cube, with sides of length 10 inches, with a 0.015 inch thick coat of paint.
3. (20 points) If a sphere of ice melts so that its surface area decreases at a rate of 1 $\mathrm{cm}^{2} / \mathrm{min}$, find the rate at which the diameter decreases when the diameter is 30 cm . (Recall that the surface area of a sphere of radius $r$ is $4 \pi r^{2}$.)
4. (20 points) Let $f$ be a continuous function on $[1,7]$, differentiable on $(1,7)$, with $f(1)=$ 0 and $f^{\prime}(x) \geq 1$ for $1<x<7$. Find the smallest possible value of $f(7)$. Justify your answer.
5. (40 points) Let $f(x)=x e^{-2 x}$.
(a) Find the local maxima and local minima of $f$, if any.
(b) Find the intervals on which $f$ is increasing and the intervals on which $f$ is decreasing.
(c) Find the inflection points of the graph of $f$.
(d) Find the intervals on which the graph of $f$ is concave up and the intervals on which the graph of $f$ is concave down.
