Math 20A
 Final Exam. December 9, 2002
 VERSION 2

Instructions: No books or notes; graphing calculators without symbolic manipulation programs are permitted. Do all 10 problems in your blue book. Show all work; unsubstantiated answers will not receive credit. Turn in your exam sheet with your blue book.

1. (20 points) Find the following derivatives and justify your answers:
(a) $\frac{d}{d x} \int_{0}^{x} \ln (1+t) d t$.
(b) $\frac{d}{d x} \int_{0}^{x^{3}} e^{t^{3}} d t$.
2. (20 points) (20 points) Evaluate the following integrals:
(a) $\int_{0}^{3} \frac{d x}{x+2}$.
(b) $\int_{0}^{63} \frac{d x}{(1+x)^{1 / 3}}$.
3. (20 points) Evaluate the following integrals:
(a) $\int_{-3}^{3}(3-|x|) d x$.
(b) $\int_{-3}^{9}(3-|x|) d x$.
4. (20 points) Show that $e^{-1} \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1$.
5. (20 points) Find the following limits and justify your answers:
(a) $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}}$.
(b) $\lim _{x \rightarrow 0} x^{2} \ln x$.
6. (20 points) A particle is moving along the curve $y=\sqrt{1+x^{2}}$. As the particle passes through the point $P=(2, \sqrt{5})$, its x-coordinate increases at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the distance to the origin changing at this time?
7. (20 points) A particle is moving on a straight line with an acceleration of $a(t)=t+\cos t$. Find the position s of the particle as a function of time t if its velocity and position at $t=0$ are $v(0)=-4$ and $s(0)=2$, respectively.
8. (20 points) $8 \mathrm{~m}^{2}$ of material is available to make a rectangular closed box whose height is 1 m . Find the largest possible volume of the box.
9. (20 points) Consider the function defined for all real numbers given by

$$
g(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Show that g is continuous at 0 .
(b) Using the definition of derivative, show that g is differentiable at 0 and evaluate $g^{\prime}(0)$.
10. (20 points) A piece of wire 12 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. how should the wire be cut so that the total area enclosed is
(a) maximum?
(b) minimum?

