AMCS/MATH 608 Problem set 9 due November 25, 2014 Dr. Epstein

Reading: There are many excellent references for this material; I especially like *Real Analysis* by Elias Stein and Rami Shakarchi.

Standard problems: The solutions to the following problems do not need to be handed in.

1. Let $\delta = (\delta_1, \dots, \delta_d)$ be a *d*-tuple of positive numbers; for a subsest $E \subset \mathbb{R}^d$ define

$$\delta E = \{ (\delta_1 x_1, \dots, \delta_d x_x) : (x_1, \dots, x_d) \in E \}.$$
(1)

If *E* is measurable, then show that δE is as well and

$$m(\delta E) = \delta_1 \cdots \delta_d m(E). \tag{2}$$

- 2. Suppose that $A \subset E \subset B$, with A and B measurable sets. Show that if m(A) = m(B), then E is measurable with m(E) = m(A).
- 3. Let *a* and *b* be positive numbers. Show that $(a + b)^{\gamma} \ge a^{\gamma} + b^{\gamma}$ whenever $\gamma \ge 1$, and that the opposite inequality holds if $0 \le \gamma \le 1$.
- 4. An alternate way to define measurable sets is to say that a set *E* is measurable, if for every *ε* > 0 there is a closed set *F* ⊂ *E*, such that *m*_{*}(*E* \ *F*) < *ε*. Show that this definition gives the same collection of measurable sets as the definition used in class.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. In class we constructed a Cantor set by successively removing the middle thirds of the remaining intervals. For any number $0 < \xi < 1$ a similar construction can be performed by successively removing the middle ξ -part of the remaining intervals. Prove that the result of this is a closed, totally disconnected set of measure zero.

We can also construct a set where we remove a different fraction from the centers of the remaining interval at each step. We let $\{\ell_k : k = 1, 2, ...\}$ be a sequence choosen so that for each k

$$\ell_1 + 2\ell_2 + \dots + 2^{k-1}\ell_k < 1.$$
(3)

At the *k*th-stage of our construction we remove the 2^{k-1} centrally located portions of length ℓ_k of the remaining intervals. Call this set C_k , and let $C = \bigcap_{k=1}^{\infty} C_k$.

(a) If the $\{\ell_j\}$ are choosen small enough so that

$$\sum_{k=1}^{\infty} 2^{k-1} \ell_k < 1, \tag{4}$$

then show that m(C) > 0, and in fact

$$m(C) = 1 - \sum_{k=1}^{\infty} 2^{k-1} \ell_k$$
(5)

- (b) Show that *C* is totally disconnected.
- (c) Show that *C* is uncountable.
- 2. Suppose that *E* is a given set, and define the open set:

$$O_n = \{x : d(x, E) < 1/n\}.$$
 (6)

If *E* is compact, then show that $m(E) = \lim_{n \to \infty} m(O_n)$. Show that there are both closed and open sets for which this is false.

3. In this problem we prove the Borel-Cantelli Lemma. Suppose that $\{E_k : k = 1, 2, ...\}$ are measurable sets for which

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$
(7)

We define the set

$$E = \{x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k\}.$$
(8)

Show that *E* is measurable and that m(E) = 0. Hint: $E = \bigcap_{k=1}^{\infty} \bigcup_{l=k}^{\infty} E_l$.

,

- Let A = C the middle thirds Cantor set, and B = C/2. Show that the set of sums, A + B, satisfies [0, 1] ⊂ A + B. This shows that its possible for two closed sets of measure zero to have a sum with m(A + B) > 0.
- 5. Let x be an irrational number. Show that there exist infinitely many fractions p/q of relatively prime integers so that

$$\left|x - \frac{p}{q}\right| \le \frac{1}{q^2}.\tag{9}$$

Hint: First show (using the pigeon hole principle for example) that for every integer n at least one element of the set $\{x, 2x, ..., (n-1)x\}$ differs from an integer by less than 1/n.

Use the Borel-Cantelli lemma to show that the set of $x \in \mathbb{R}$ for which there are infinitely many p/q with

$$\left|x - \frac{p}{q}\right| \le \frac{1}{q^3}.\tag{10}$$

is a set of measure zero.

6. Let *E* be subset of \mathbb{R} with $m_*(E) > 0$. Prove that for every $0 < \alpha < 1$, there exists an open interval *I* such that

$$m_*(E \cap I) \ge \alpha m_*(I). \tag{11}$$

Hint: Choose an open set $O \supset E$, such that $m_*(E) \ge \alpha m_*(O)$. Write O as a disjoint union of open intervals, and show that at least one of these intervals must satisfy the desired estimate.

7. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, and let

$$\Gamma = \{ (x, f(x)) : x \in \mathbb{R} \}.$$
(12)

Show that Γ is measurable and that $m(\Gamma) = 0$. That is: the 2-dimensional measure of a graph is always zero.