AMCS/MATH 608

Problem set 9 due November 25, 2014 Dr. Epstein

Reading: There are many excellent references for this material; I especially like Real Analysis by Elias Stein and Rami Shakarchi.
Standard problems: The solutions to the following problems do not need to be handed in.

1. Let $\delta=\left(\delta_{1}, \ldots, \delta_{d}\right)$ be a d-tuple of positive numbers; for a subsest $E \subset \mathbb{R}^{d}$ define

$$
\begin{equation*}
\delta E=\left\{\left(\delta_{1} x_{1}, \ldots, \delta_{d} x_{x}\right):\left(x_{1}, \ldots, x_{d}\right) \in E\right\} . \tag{1}
\end{equation*}
$$

If E is measurable, then show that δE is as well and

$$
\begin{equation*}
m(\delta E)=\delta_{1} \cdots \delta_{d} m(E) \tag{2}
\end{equation*}
$$

2. Suppose that $A \subset E \subset B$, with A and B measurable sets. Show that if $m(A)=$ $m(B)$, then E is measurable with $m(E)=m(A)$.
3. Let a and b be positive numbers. Show that $(a+b)^{\gamma} \geq a^{\gamma}+b^{\gamma}$ whenever $\gamma \geq 1$, and that the opposite inequality holds if $0 \leq \gamma \leq 1$.
4. An alternate way to define measurable sets is to say that a set E is measurable, if for every $\epsilon>0$ there is a closed set $F \subset E$, such that $m_{*}(E \backslash F)<\epsilon$. Show that this definition gives the same collection of measurable sets as the definition used in class.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. In class we constructed a Cantor set by successively removing the middle thirds of the remaining intervals. For any number $0<\xi<1$ a similar construction can be performed by successively removing the middle ξ-part of the remaining intervals. Prove that the result of this is a closed, totally disconnected set of measure zero.

We can also construct a set where we remove a different fraction from the centers of the remaining interval at each step. We let $\left\{\ell_{k}: k=1,2, \ldots\right\}$ be a sequence choosen so that for each k

$$
\begin{equation*}
\ell_{1}+2 \ell_{2}+\cdots+2^{k-1} \ell_{k}<1 \tag{3}
\end{equation*}
$$

At the $k^{\text {th }}$-stage of our construction we remove the 2^{k-1} centrally located portions of length ℓ_{k} of the remaining intervals. Call this set C_{k}, and let $C=\cap_{k=1}^{\infty} C_{k}$.
(a) If the $\left\{\ell_{j}\right\}$ are choosen small enough so that

$$
\begin{equation*}
\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}<1 \tag{4}
\end{equation*}
$$

then show that $m(C)>0$, and in fact

$$
\begin{equation*}
m(C)=1-\sum_{k=1}^{\infty} 2^{k-1} \ell_{k} \tag{5}
\end{equation*}
$$

(b) Show that C is totally disconnected.
(c) Show that C is uncountable.
2. Suppose that E is a given set, and define the open set:

$$
\begin{equation*}
O_{n}=\{x: d(x, E)<1 / n\} \tag{6}
\end{equation*}
$$

If E is compact, then show that $m(E)=\lim _{n \rightarrow \infty} m\left(O_{n}\right)$. Show that there are both closed and open sets for which this is false.
3. In this problem we prove the Borel-Cantelli Lemma. Suppose that $\left\{E_{k}: k=\right.$ $1,2, \ldots\}$ are measurable sets for which

$$
\begin{equation*}
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty \tag{7}
\end{equation*}
$$

We define the set

$$
\begin{equation*}
E=\left\{x \in \mathbb{R}^{d}: x \in E_{k} \text { for infinitely many } k\right\} \tag{8}
\end{equation*}
$$

Show that E is measurable and that $m(E)=0$. Hint: $E=\cap_{k=1}^{\infty} \cup_{l=k}^{\infty} E_{l}$.
4. Let $A=C$ the middle thirds Cantor set, and $B=C / 2$. Show that the set of sums, $A+B$, satisfies $[0,1] \subset A+B$. This shows that its possible for two closed sets of measure zero to have a sum with $m(A+B)>0$.
5. Let x be an irrational number. Show that there exist infinitely many fractions p / q of relatively prime integers so that

$$
\begin{equation*}
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2}} . \tag{9}
\end{equation*}
$$

Hint: First show (using the pigeon hole principle for example) that for every integer n at least one element of the set $\{x, 2 x, \ldots,(n-1) x\}$ differs from an integer by less than $1 / n$.

Use the Borel-Cantelli lemma to show that the set of $x \in \mathbb{R}$ for which there are infinitely many p / q with

$$
\begin{equation*}
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{3}} . \tag{10}
\end{equation*}
$$

is a set of measure zero.
6. Let E be subset of \mathbb{R} with $m_{*}(E)>0$. Prove that for every $0<\alpha<1$, there exists an open interval I such that

$$
\begin{equation*}
m_{*}(E \cap I) \geq \alpha m_{*}(I) \tag{11}
\end{equation*}
$$

Hint: Choose an open set $O \supset E$, such that $m_{*}(E) \geq \alpha m_{*}(O)$. Write O as a disjoint union of open intervals, and show that at least one of these intervals must satisfy the desired estimate.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and let

$$
\begin{equation*}
\Gamma=\{(x, f(x)): x \in \mathbb{R}\} \tag{12}
\end{equation*}
$$

Show that Γ is measurable and that $m(\Gamma)=0$. That is: the 2-dimensional measure of a graph is always zero.

