AMCS/MATH 608

Problem set 8 due November 18, 2014
Dr. Epstein

Reading: There are many excellent references for this material; I especially like Complex Analysis by Elias Stein and Rami Shakarchi.
Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Suppose that f is continuous and there is an A so that $|f(x)| \leq A /\left(1+x^{2}\right)$. Suppose that $\hat{f}(\xi)=0$ for all $\xi \in \mathbb{R}$. Show that $f \equiv 0$ by using the following argument:
(a) For each fixed real number t define the functions

$$
\begin{equation*}
A(z)=\int_{-\infty}^{t} f(x) e^{-2 \pi i z(x-t)} d x \text { and } B(z)=-\int_{t}^{\infty} f(x) e^{-2 \pi i z(x-t)} d x \tag{1}
\end{equation*}
$$

Show that $A(\xi)=B(\xi)$ for all $\xi \in \mathbb{R}$.
(b) Prove that the function

$$
F(z)=\left\{\begin{array}{l}
A(z) \text { if } \operatorname{Im} z \geq 0 \tag{2}\\
B(z) \text { if } \operatorname{Im} z<0
\end{array}\right.
$$

is entire, and bounded and therefore constant. In fact, show that $F \equiv 0$.
(c) Deduce that

$$
\begin{equation*}
\int_{-\infty}^{t} f(x) d x=0 \tag{3}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and therefore $f \equiv 0$.
2. As usual, let

$$
\begin{equation*}
\mathscr{F}(f)(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x \tag{4}
\end{equation*}
$$

for $f \in \mathscr{S}(\mathbb{R})$. Show that this linear transformation $\mathscr{F}: \mathscr{S}(\mathbb{R}) \rightarrow \mathscr{S}(\mathbb{R})$ satisfies the equations $\mathscr{F}^{4}=\mathrm{Id}$. For what complex numbers λ can there exist a non-zero function $\varphi \in \mathscr{S}(\mathbb{R})$ so that

$$
\begin{equation*}
\mathscr{F}(\varphi)=\lambda \varphi ? \tag{5}
\end{equation*}
$$

Show that for some choice of a we have $\mathscr{F}\left(e^{-a^{2} x^{2}}\right)=e^{-a^{2} \xi^{2}}$.
3. Show that for $\varphi \in \mathscr{Y}(\mathbb{R})$ we have

$$
\begin{equation*}
\mathscr{F}\left(\left[\frac{ \pm}{\sqrt{2 \pi}} \partial_{x}+\sqrt{2 \pi} x\right] \varphi(x)\right)= \pm i\left(\frac{ \pm}{\sqrt{2 \pi}} \partial_{\xi}+\sqrt{2 \pi} \xi\right) \mathscr{F}(\varphi)(\xi) . \tag{6}
\end{equation*}
$$

Use this identity and the result of the previous problem to find eigenfunctions of the Fourier transform for all possible eigenvalues.
4. Suppose that $\left\{a_{0}, \ldots, a_{n}\right\}$ are complex numbers such that $a_{n} \neq 0$, and the polynomial

$$
\begin{equation*}
p(\xi)=\sum_{j=0}^{n} a_{j}(2 \pi i \xi)^{j} \tag{7}
\end{equation*}
$$

has no real roots.
(a) For $g \in \mathscr{S}(\mathbb{R})$ use the Fourier transform to find a formula for a solution, u_{0}, to the differential equation

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} \partial_{x}^{j} u(x)=g(x) \tag{8}
\end{equation*}
$$

which tends to zero as $x \rightarrow \pm \infty$. Show that, in fact, $u_{0} \in \mathscr{Y}(\mathbb{R})$.
(b) This equation has an n-dimensional solution space. Describe it as explicitly as you can. Show that the solution, which tends to zero as $\pm x \rightarrow \infty$, is unique.
(c) If all the roots of p have positive imaginary parts, and g is compactly supported, then show that there is an A and a $\tau>0$ so that

$$
\begin{equation*}
\left|u_{0}(x)\right| \leq A e^{-\tau x} \text { as } x \rightarrow \infty \tag{9}
\end{equation*}
$$

(d) How does the solution, u_{0}, behave as $x \rightarrow-\infty$ if g has compact support and all roots of p lie in the upper half plane?
(e) Assuming that p has no real roots, find the most general condition on $g \in$ $\mathscr{C}_{c}^{\infty}(\mathbb{R})$ so that equation (8) has a solution with compact support.
5. Recall that

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} d x=e^{-2 \pi a|\xi|} \tag{10}
\end{equation*}
$$

Prove that for $a>0$, we have

$$
\begin{equation*}
\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{a}{a^{2}+n^{2}}=\sum_{n=-\infty}^{\infty} e^{-2 \pi a|n|} \tag{11}
\end{equation*}
$$

Conclude that the sum equals $\operatorname{coth}(\pi a)$. Prove that for any $z \in \mathbb{C} \backslash\{i n: n \in \mathbb{Z}\}$ we have the identity

$$
\begin{equation*}
\operatorname{coth}(\pi z)=\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{z}{z^{2}+n^{2}} \tag{12}
\end{equation*}
$$

deduce from this formula that

$$
\begin{equation*}
\tanh \left(\frac{\pi z}{2}\right)=\frac{2}{\pi} \sum_{n=-\infty}^{\infty} \frac{z}{(2 n-1)^{2}+z^{2}} \tag{13}
\end{equation*}
$$

