AMCS/MATH 608

Problem set 7 due November 11, 2014

Dr. Epstein

Reading: There are many excellent references for this material; I especially like Complex Analysis by Elias Stein and Rami Shakarchi.
Standard problem This does not have to be turned in:

1. Show that there exists a surjective holomorphic map from the unit disk onto \mathbb{C}.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let f be a holomorphic function in a sector, S, whose vertex is the origin with an openning angle π / β, which extends continuously to \bar{S}. Suppose that $|f(z)| \leq 1$ on $b S$ and, for some constants c, C, and an $0<\alpha<\beta$, we also have the estimate.

$$
\begin{equation*}
|f(z)| \leq C e^{c|z|^{\alpha}} \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
|f(z)| \leq 1 \text { for } z \in S \tag{2}
\end{equation*}
$$

2. Let $D=\mathbb{C} \backslash(-\infty, 0]$. Show that if $f_{ \pm}(x)$ are bounded continuous functions on $\left(-\infty, 0\right.$], with $f_{+}(0)=f_{-}(0)$, then there is a unique bounded harmonic function u defined in D such that

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} u(x, y)=f_{+}(x) \text { and } \lim _{y \rightarrow 0^{-}} u(x, y)=f_{-}(x) \text { for all } x \in(-\infty, 0] . \tag{3}
\end{equation*}
$$

3. Show that if $f: D_{R}(0) \rightarrow \mathbb{C}$ is holomorphic, and $|f(z)|<M$, for some positive M, then

$$
\begin{equation*}
\left|\frac{f(z)-f(0)}{M^{2}-\overline{f(0)} f(z)}\right| \leq \frac{|z|}{M R}, \text { for all } z \in D_{R}(0) \tag{4}
\end{equation*}
$$

4. The pseudo-hyperbolic distance between two points in $D_{1}(0)$ is defined to be

$$
\begin{equation*}
\rho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right| . \tag{5}
\end{equation*}
$$

(a) Prove that if $f: D_{1}(0) \rightarrow D_{1}(0)$ is holomorphic, then

$$
\begin{equation*}
\rho(f(z), f(w)) \leq \rho(z, w) \text { for all } z, w \in D_{1}(0) \tag{6}
\end{equation*}
$$

Show also that if f is 1-1 and onto, then it preserves this distance, i.e., for such maps $\rho(f(z), f(w))=\rho(z, w)$ for all $z, w \in D_{1}(0)$.
(b) For general holomorphic maps $f: D_{1}(0) \rightarrow D_{1}(0)$, prove that

$$
\begin{equation*}
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}} \tag{7}
\end{equation*}
$$

5. Suppose that $\xi_{1}<\xi_{2}<\cdots<\xi_{n}$ are points on the real axis and that

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{d w}{\left[\left(w-\xi_{1}\right)\left(w-\xi_{2}\right) \cdots\left(w-\xi_{n}\right)\right]^{\frac{2}{n}}} \tag{8}
\end{equation*}
$$

maps the upper half plane 1-1, onto a regular convex polygon. Give a precise description for all possible choices of the points $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$. Hint: Start by showing that

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{d w}{\left(1-w^{n}\right)^{\frac{2}{n}}}, \tag{9}
\end{equation*}
$$

maps the unit disk to a regular n-gon.
6. Let $0<b \leq a$ be positive numbers, and define the pair $\left(a_{1}, b_{1}\right)$ to be the arithmetic and geometric means of a and b

$$
\begin{equation*}
a_{1}=\frac{a+b}{2} \text { and } b_{1}=\sqrt{a b} . \tag{10}
\end{equation*}
$$

Repeating these operations defines a sequence of pairs $<\left(a_{n}, b_{n}\right)>$.
(a) Prove that the two sequences $\left\langle a_{n}>\right.$ and $<b_{n}>$ have a common limits, $M(a, b)$, which we call the arithmetic-geometric metric of (a, b). Hint: show that

$$
\begin{equation*}
a \geq a_{1} \geq a_{2} \geq \cdots a_{n} \geq b_{n} \cdots \geq b_{1} \geq b \text { and } a_{n}-b_{n} \leq \frac{a-b}{2^{n}} \tag{11}
\end{equation*}
$$

In fact, the sequence $a_{n}-b_{n}$ tends to zero much faster than indicated by this estimate. Can you find a more accurate result, assuming that $b<a<2 b$? You should write a program to compute these iterates and the differences $a_{n}-b_{n}$. Use the $\log \left(a_{n}-b_{n}\right)$, so you can see how fast it is going to zero.
(b) Gauss proved that

$$
\begin{equation*}
\frac{1}{M(a, b)}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}} \tag{12}
\end{equation*}
$$

Prove this relation by:
i. Showing that it follows from the fact that the integral on the right hand side of (12), $I(a, b)$, satisfies

$$
\begin{equation*}
I(a, b)=I\left(\frac{a+b}{2}, \sqrt{a b}\right) . \tag{13}
\end{equation*}
$$

ii. Next show that, with $k^{2}=1-\frac{b^{2}}{a^{2}}$, we have

$$
\begin{equation*}
I(a, b)=\frac{1}{a} K(k)=\frac{1}{a} \int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} . \tag{14}
\end{equation*}
$$

iii. Finally show that (13) is equivalent to the identity

$$
\begin{equation*}
K(k)=\frac{2}{1+k^{\prime}} K\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right) \text { where } k^{\prime 2}=1-k^{2} \tag{15}
\end{equation*}
$$

iv. Give a geometric interpretation for the number $K(k)$.
7. For $1<\rho$, define an analytic function on the upper half plane by:

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{d w}{\sqrt{w(1-w)(\rho-w)}} \tag{16}
\end{equation*}
$$

Show that, for any choice of $1<\rho$, the image of the upper half plane is a rectangle. What are the side lengths of this rectangle?

