AMCS/MATH 608
 Problem set 4 due October 7, 2014
 Dr. Epstein

Reading: There are many excellent references for this material; several I especially like are Complex Analysis by Elias Stein and Rami Shakarchi, Complex Analysis by Lars V. Ahlfors, and Conformal Mapping by Zeev Nehari. Conformal Mapping is an especially good reference for material on harmonic functions.

Standard problems: The following problems should be done, but do not have to be handed in.

1. For each $z \in \mathbb{C}$ the function

$$
\begin{equation*}
g(z ; t)=\exp \left(\frac{z}{2}\left(t-t^{-1}\right)\right) \tag{1}
\end{equation*}
$$

is an analytic function of $t \in \mathbb{C} \backslash\{0\}$ and therefore has a Laurent expansion:

$$
\begin{equation*}
g(z ; t)=\sum_{n=-\infty}^{\infty} J_{n}(z) t^{n} \tag{2}
\end{equation*}
$$

convergent in this set.
(a) Show that

$$
\begin{equation*}
J_{n}(z)=\frac{1}{2 \pi i} \int_{\{t:|t|=1\}} \frac{g(z ; t) d t}{t^{n+1}} . \tag{3}
\end{equation*}
$$

Conclude that $J_{n}(z)$ is an entire function of z for every $n \in \mathbb{Z}$, and that $J_{-n}(z)=J_{n}(-z)$.
(b) Use this contour integral to estimate $J_{n}(z)$. Can you show that there is a constant C so that

$$
\begin{equation*}
\left|J_{n}(z)\right| \leq C \sqrt{|n|+1} \frac{\left(\frac{|z|}{2}\right)^{|n|} e^{|z|}}{|n|!} ? \tag{4}
\end{equation*}
$$

Hint: You will need to choose a contour in (3) that depends on z to get the optimal result. Why is this allowed?
(c) Use the generating function representation to show that:

$$
\begin{equation*}
J_{n}^{\prime \prime}(z)+\frac{1}{z} J_{n}^{\prime}(z)+\left(1-\frac{n^{2}}{z^{2}}\right) J_{n}(z)=0 \tag{5}
\end{equation*}
$$

2. Evaluate the integral $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$.
3. Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be points lying inside the simple closed curve γ and define

$$
\begin{equation*}
p(z)=\prod_{j=1}^{n}\left(z-z_{j}\right) \tag{6}
\end{equation*}
$$

If f is analytic inside of γ and continuous up to γ, then show that

$$
\begin{equation*}
P(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{p(\zeta)} \frac{p(\zeta)-p(z)}{\zeta-z} d \zeta \tag{7}
\end{equation*}
$$

is a polynomial of degree $n-1$, which satisfies:

$$
\begin{equation*}
P\left(z_{j}\right)=f\left(z_{j}\right) \text { for } j=1, \ldots, n \tag{8}
\end{equation*}
$$

4. Prove that the sequence of entire functions, $f_{n}(z)=\left(1+\frac{z}{n}\right)^{n}$ converges locally uniformly to $f(z)=e^{z}$. Using this fact, prove that $f(z)=0$ has no solution.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Show that, if a is a real number greater than 1 , then the equation

$$
\begin{equation*}
z e^{a-z}=1 \tag{9}
\end{equation*}
$$

has precisely one root in the unit disk $\{z:|z| \leq 1\}$. Explain why this root is necessarily a positive real number.
2. The Beta function is defined for $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\beta)>0$ by

$$
\begin{equation*}
B(\alpha, \beta)=\int_{0}^{1}(1-t)^{\alpha-1} t^{\beta-1} d t \tag{10}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \tag{11}
\end{equation*}
$$

Hint: Note that

$$
\begin{equation*}
\Gamma(\alpha) \Gamma(\beta)=\int_{0}^{\infty} \int_{0}^{\infty} t^{\alpha-1} s^{\beta-1} e^{-t-s} d t d s \tag{12}
\end{equation*}
$$

and let $s=u r$, and $t=u(1-r)$.
3. Evaluate the following integrals:
(a) $\int_{0}^{\infty} \frac{x^{\alpha-1} d x}{(x+\beta)(x+\gamma)}$, where $0<\alpha<1$, and $\beta, \gamma>0$.
(b) $\int_{0}^{\infty} \frac{\cos x d x}{a^{2}+x^{2}}$, for $a>0$.
(c) $\int_{-\infty}^{\infty} \frac{x \sin x d x}{a^{2}+x^{2}}$, for $a>0$. Note that this integral is not absolutely convergent, so you need to specify the meaning of this integral as a limit of integrals over finite intervals.
(d) Show that, for $\in \mathbb{N}$, we have

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} \pi
$$

4. Compute the improper Riemann integrals:

$$
\begin{equation*}
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\lim _{r \rightarrow \infty} \int_{0}^{r} \cos \left(x^{2}\right) d x, \quad \int_{0}^{\infty} \sin \left(x^{2}\right) d x=\lim _{r \rightarrow \infty} \int_{0}^{r} \sin \left(x^{2}\right) d x \tag{13}
\end{equation*}
$$

by evaluating the contour integral,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{\Gamma_{r}} e^{-z^{2}} d z \tag{14}
\end{equation*}
$$

where Γ_{r} is the contour shown in Figure 1.

Figure 1. The integration contour Γ_{r}.
5. Let f be a 1-1 analytic function defined in $D_{1}(0)$, with $f(0)=w_{0}$. As shown in class, the inverse of f for w a neighborhood of w_{0} is given by

$$
\begin{equation*}
g(w)=\frac{1}{2 \pi i} \int_{|z|=1} \frac{z f^{\prime}(z)}{f(z)-w} d z \tag{15}
\end{equation*}
$$

Use the fact that

$$
\begin{equation*}
\frac{1}{f(z)-w}=\frac{1}{f(z)-w_{0}-\left(w_{0}-w\right)}, \tag{16}
\end{equation*}
$$

to derive a formula, in terms of f, for the Taylor coefficients of g at w_{0}.
6. Show that if $|a|<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi} \log \left|1-a e^{i \theta}\right| d \theta=0 \tag{17}
\end{equation*}
$$

7. Suppose that f is an non-vanishing analytic function defined in a connected domain $D \subset \mathbb{C}$. Suppose that for every $n \in \mathbb{N}$, there is an analytic function $h_{n}(z)$ defined in D so that $f(z)=\left[h_{n}(z)\right]^{n}$. Show that there is an analytic function $g(z)$ defined in D so that $f(z)=e^{g(z)}$. Note: we do NOT assume that D is simply connected.
