AMCS/MATH 608

Problem set 3 due September 30, 2014
Dr. Epstein

Reading: There are many excellent references for this material; several I especially like are Complex Analysis by Elias Stein and Rami Shakarchi, Complex Analysis by Lars V. Ahlfors, and Conformal Mapping by Zeev Nehari.

Standard problems: The following problems should be done, but do not have to be handed in.

1. A region $D \subset \mathbb{C}$ is simply connected if every closed curve in D can be continuously deformed to a point through a family of cloed curves contained in D. For $0 \leq r<R$ show that the annular region:

$$
\begin{equation*}
A_{r R}=\{z: r<|z|<R\} \tag{1}
\end{equation*}
$$

is not simply connected.
Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let f be a funtion defined and analytic in the right half plane $H=\{\operatorname{Re} t \geq 0\}$ and suppose that there is a constant C so that

$$
\begin{equation*}
|f(t)| \leq \frac{C}{1+|t|^{2}} \text { for } t \in H \tag{2}
\end{equation*}
$$

Define the function:

$$
\begin{equation*}
F(x)=\int_{\{\operatorname{Re} t=0\}} f(t) e^{t x} d t \tag{3}
\end{equation*}
$$

Suppose that for some $0<\theta<\frac{\pi}{2}$, and $0<R, f$ extends to be analytic in the set

$$
\begin{equation*}
H \cup\left\{t:|\arg t| \leq \theta+\frac{\pi}{2} \text { and }|t|>R\right\}, \tag{4}
\end{equation*}
$$

where it continues to satisfy the estimate in (2). Show that F extends to define an analytic function $F(z)$, in the set

$$
\begin{equation*}
\{z:|\arg z|<\theta\} . \tag{5}
\end{equation*}
$$

Hint: Consider the contours $\Gamma_{R, \phi}$ shown below.

Figure 1. The contour $\Gamma_{R, \phi}$.
2. Suppose that $\alpha \in D_{1}(0)$, and $\theta \in \mathbb{R}$. Show that

$$
\begin{equation*}
f(z)=e^{i \theta} \frac{z-\alpha}{1-\bar{\alpha} z} \tag{6}
\end{equation*}
$$

is a $1-1$, onto analytic map of $D_{1}(0)$ to itself. Show that every $1-1$, onto analytic self map of $D_{1}(0)$ is of this form. Show that $g(z)=i(1+z) /(1-z)$ is a 1-1, onto analytic map from the unit disk to $H_{+}=\{z: \operatorname{Im} z>0\}$. Use this map and the first part of the problem to find all the $1-1$, onto analytic maps of H_{+}to itself. Be as explicit as you can be.
3. Suppose that f is a non-vanishing analytic function in $D_{1}^{+}(0)$ that extends continuously to the set $D_{1}^{+}(0) \cup(-1,1)$. Suppose that for $x \in(-1,1)$, the value $f(x)$ lies in $b D_{R}(0)$; show that defining $f(z)$, for $z \in D_{1}^{-}(0)$, by

$$
\begin{equation*}
f(z)=\frac{R^{2}}{\overline{f(\bar{z})}} \tag{7}
\end{equation*}
$$

gives an analytic continuation of f to $D_{1}(0)$. You can assume that f does not vanish in $D_{1}^{+}(0)$.
4. Prove that if f is an analytic function in all of \mathbb{C}, except for poles, and f has, at worst, a pole at infinity, then there are polynomials p and q so that

$$
\begin{equation*}
f(z)=\frac{p(z)}{q(z)} \tag{8}
\end{equation*}
$$

Note: We say that " $f(z)$ has, at worst, a pole at ∞ " if $f(1 / z)$ has, at worst, a pole at $z=0$.
5. Let $U \subset \mathbb{C}$ be an open set. For f a function defined in U we define the norms:

$$
\begin{equation*}
\|f\|_{L^{2}(U)}=\sqrt{\iint_{U}|f(z, \bar{z})|^{2} d x d y} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{L^{\infty}(U)}=\sup _{z \in U}|f(z, \bar{z})| . \tag{10}
\end{equation*}
$$

Suppose that f is holomorphic in $D_{1}(0)$ show that, for each $0<s<r<1$, there is a constant $C_{r s}$ (depending on r, s, but not on f) so that

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(D_{s}(0)\right)} \leq C_{r s}\|f\|_{L^{2}\left(D_{r}(0)\right)} \tag{11}
\end{equation*}
$$

Suppose that $<f_{n}>$ is a sequence of analytic functions, with finite $L^{2}\left(B_{1}(0)\right)$ norms, for which there is a function $f \in L^{2}\left(D_{1}(0)\right)$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{2}\left(D_{1}(0)\right)}=0 \tag{12}
\end{equation*}
$$

Prove that the limit function f is also analytic in $D_{1}(0)$, or more precisely, has a representative that is analytic in $D_{1}(0)$. Show that $\|f\|_{L^{2}\left(D_{1}(0)\right)}<\infty$.
6. Suppose that f is an analytic function in $D_{1+\delta}(0) \backslash\left\{z_{0}\right\}$, where $\delta>0$ and $\left|z_{0}\right|=1$. Show that if

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{13}
\end{equation*}
$$

in the unit disk, and f has at worst a pole at z_{0}, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=z_{0} \tag{14}
\end{equation*}
$$

