AMCS/MATH 608 Problem set 3 due September 30, 2014 Dr. Epstein

Reading: There are many excellent references for this material; several I especially like are *Complex Analysis* by Elias Stein and Rami Shakarchi, *Complex Analysis* by Lars V. Ahlfors, and *Conformal Mapping* by Zeev Nehari.

Standard problems: The following problems should be done, but do not have to be handed in.

1. A region $D \subset \mathbb{C}$ is simply connected if every closed curve in D can be continuously deformed to a point through a family of cloed curves contained in D. For $0 \leq r < R$ show that the annular region:

$$A_{rR} = \{ z : r < |z| < R \}$$
(1)

is not simply connected.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let f be a function defined and analytic in the right half plane $H = {\text{Re } t \ge 0}$ and suppose that there is a constant C so that

$$|f(t)| \le \frac{C}{1+|t|^2} \text{ for } t \in H.$$
 (2)

Define the function:

$$F(x) = \int_{\{\operatorname{Re} t=0\}} f(t)e^{tx}dt.$$
(3)

Suppose that for some $0 < \theta < \frac{\pi}{2}$, and 0 < R, f extends to be analytic in the set

$$H \cup \{t : |\arg t| \le \theta + \frac{\pi}{2} \text{ and } |t| > R\},$$
(4)

where it continues to satisfy the estimate in (2). Show that F extends to define an analytic function F(z), in the set

$$\{z: |\arg z| < \theta\}. \tag{5}$$

Hint: Consider the contours $\Gamma_{R,\phi}$ shown below.

Figure 1. The contour $\Gamma_{R,\phi}$.

2. Suppose that $\alpha \in D_1(0)$, and $\theta \in \mathbb{R}$. Show that

$$f(z) = e^{i\theta} \frac{z - \alpha}{1 - \bar{\alpha}z},\tag{6}$$

is a 1-1, onto analytic map of $D_1(0)$ to itself. Show that every 1-1, onto analytic self map of $D_1(0)$ is of this form. Show that g(z) = i(1+z)/(1-z) is a 1-1, onto analytic map from the unit disk to $H_+ = \{z : \text{Im } z > 0\}$. Use this map and the first part of the problem to find all the 1-1, onto analytic maps of H_+ to itself. Be as explicit as you can be.

3. Suppose that f is a non-vanishing analytic function in $D_1^+(0)$ that extends continuously to the set $D_1^+(0) \cup (-1, 1)$. Suppose that for $x \in (-1, 1)$, the value f(x) lies in $bD_R(0)$; show that defining f(z), for $z \in D_1^-(0)$, by

$$f(z) = \frac{R^2}{\overline{f(\bar{z})}},\tag{7}$$

gives an analytic continuation of f to $D_1(0)$. You can assume that f does not vanish in $D_1^+(0)$.

4. Prove that if f is an analytic function in all of \mathbb{C} , except for poles, and f has, at worst, a pole at infinity, then there are polynomials p and q so that

$$f(z) = \frac{p(z)}{q(z)}.$$
(8)

Note: We say that "f(z) has, at worst, a pole at ∞ " if f(1/z) has, at worst, a pole at z = 0.

5. Let $U \subset \mathbb{C}$ be an open set. For f a function defined in U we define the norms:

$$\|f\|_{L^{2}(U)} = \sqrt{\iint_{U} |f(z,\bar{z})|^{2} dx dy},$$
(9)

and

$$\|f\|_{L^{\infty}(U)} = \sup_{z \in U} |f(z, \bar{z})|.$$
(10)

Suppose that f is holomorphic in $D_1(0)$ show that, for each 0 < s < r < 1, there is a constant C_{rs} (depending on r, s, but not on f) so that

$$\|f\|_{L^{\infty}(D_{s}(0))} \leq C_{rs} \|f\|_{L^{2}(D_{r}(0))}.$$
(11)

Suppose that $\langle f_n \rangle$ is a sequence of analytic functions, with finite $L^2(B_1(0))$ norms, for which there is a function $f \in L^2(D_1(0))$, such that

$$\lim_{n \to \infty} \|f - f_n\|_{L^2(D_1(0))} = 0.$$
(12)

Prove that the limit function f is also analytic in $D_1(0)$, or more precisely, has a representative that is analytic in $D_1(0)$. Show that $||f||_{L^2(D_1(0))} < \infty$.

6. Suppose that f is an analytic function in $D_{1+\delta}(0) \setminus \{z_0\}$, where $\delta > 0$ and $|z_0| = 1$. Show that if

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$
(13)

in the unit disk, and f has at worst a pole at z_0 , then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0. \tag{14}$$