AMCS/MATH 608

Problem set 2 due September 23, 2014
 Dr. Epstein

Reading: There are many excellent references for this material; several I especially like are Complex Analysis by Elias Stein and Rami Shakarchi, Complex Analysis by Lars V. Ahlfors, and Conformal Mapping by Zeev Nehari.

Standard problems: The following problems should be done, but do not have to be handed in.

1. Show that there does not exist an analytic function in $D_{1}(0)$, which extends continuously to $\{z:|z|=1\}$, so that $f(z)=1 / z$ on the unit circle.
2. Suppose that $f: D_{1}(0) \rightarrow \mathbb{C}$ is an analytic map and $f^{\prime}(0) \neq 0$. In class we showed that there is an $r>0$ and an analytic map $g: D_{r}(f(0)) \rightarrow D_{1}(0)$, satisfying $g(f(0))=0, f(g(w))=w$, for $w \in D_{r}(f(0))$, and $g(f(z))=z$, for z closed enough to 0 .
(a) Show that for any $n \in \mathbb{N}$ and $w_{0} \in \mathbb{C} \backslash\{0\}$ there is an analytic nth root function $g_{n}(w)$ defined in a neighborhood U of w_{0}, so that, for $w \in U$, we have $\left(g_{n}(w)\right)^{n}=w$. Explain why, if $n>1$, no such function can be analytic in a neighborhood of 0 .
(b) Show that there is a neighborhood U of any point $w_{0} \in \mathbb{C} \backslash\{0\}$ in which an analytic function $l(w)$ is defined that satisfies

$$
\begin{equation*}
e^{l(w)}=w, \tag{1}
\end{equation*}
$$

for $w \in U$. This is a branch of the log. What is the real part of l ? For this problem we can take e^{z} to be the entire function defined by the power series:

$$
\begin{equation*}
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \tag{2}
\end{equation*}
$$

You need to prove that e^{z} satisfies the hypotheses in part (a).

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let $\left\{w_{1}, \ldots, w_{m}\right\}$ be points in the unit circle. Show that there exists a point, z on the unit circle where

$$
\begin{equation*}
\prod_{j=1}^{m}\left|z-w_{j}\right|>1 \tag{3}
\end{equation*}
$$

Conclude that there are also points on the unit circle where

$$
\begin{equation*}
\prod_{j=1}^{m}\left|z-w_{j}\right|=1 \tag{4}
\end{equation*}
$$

2. Show that

$$
\begin{equation*}
4 \partial_{z} \partial_{\bar{z}}=4 \partial_{\bar{z}} \partial_{z}=\Delta, \tag{5}
\end{equation*}
$$

where $\Delta=\partial_{x}^{2}+\partial_{y}^{2}$ is the Laplace operator.
(a) Show that if $f=u+i v$ is an analytic function in an open subset of \mathbb{C}, then u and v are harmonic, that is

$$
\begin{equation*}
\Delta u=\Delta v=0 . \tag{6}
\end{equation*}
$$

(b) Suppose that U is a harmonic function in $B_{1}(0)$. Show that there is a function V that satisfies the system of equations:

$$
\begin{equation*}
V_{x}=-U_{y} \text { and } V_{y}=U_{x} . \tag{7}
\end{equation*}
$$

Conclude that $U+i V$ is analytic in $B_{1}(0)$. If $U=x^{5}-10 x^{3} y^{2}+5 x y^{4}$ what is V ?
3. Suppose that f is analytic in $D_{R_{0}}(0)$. Show that whenever $0<R<R_{0}$ and $|z|<R$, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \theta}\right) \operatorname{Re}\left(\frac{R e^{i \theta}+z}{R e^{i \theta}-z}\right) d \theta . \tag{8}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{R e^{i \theta}+r}{R e^{i \theta}-r}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos \theta+r^{2}} . \tag{9}
\end{equation*}
$$

Finally, if $f=u+i v$, and $f(0)$ is real, then show that

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \theta}\right)\left(\frac{R e^{i \theta}+z}{R e^{i \theta}-z}\right) d \theta \tag{10}
\end{equation*}
$$

4. Suppose that f is analytic in the set $D_{1}(0)^{c}=\{z:|z|>1\}$, continuous up to $|z|=1$, and bounded as $z \rightarrow \infty$. Find an analogue of the Cauchy integral formula expressing $f(z)$ for $z \in D_{1}(0)^{c}$ as a complex weighted average of the values of f on the unit circle.
Using this formula find a simple expression for $\lim _{z \rightarrow \infty} f(z)$. How do we know that this limit exists?

Find a similar formula for $f(z), z \in D_{1}(0)^{c}$, if f satisfies an estimate of the form $|f(z)| \leq C|z|^{n}$ as $z \rightarrow \infty$.
You must prove that your formulæ are correct.
5. Let f be a non-constant analytic function defined in a neighborhood of the closed unit disk. Suppose that $|f(z)|=1$ where $|z|=1$. Show that $\theta \rightarrow f\left(e^{i \theta}\right)$ goes counterclockwise around the unit disk, and makes at least one full rotation. Hint: In a neighborhood of any point on the unit disk $\log f(z)=\log |f(z)|+i \arg f(z)$ is an analytic function. Use the maximum principle.
6. Suppose that f is an analytic function defined in $D_{1}(0)$. We say that $e^{i \theta}$ is a regular boundary point for f if there is $\rho>0$, so that f has an analytic extension to the set $D_{1}(0) \cup D_{\rho}\left(e^{i \theta}\right)$. The function

$$
\begin{equation*}
f(z)=\sum_{j=0}^{\infty} z^{2^{j}} \tag{11}
\end{equation*}
$$

is clearly analytic in $D_{1}(0)$. Prove that there are no regular boundary points. Hint: consider points of the form $r e^{i \theta}$ where $\theta=\frac{2 \pi p}{2^{k}}$, with p and k positive integers.

